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ABSTRACT

The development of a universal solution of the main problem in artificial satellite

theory has only recently been accomplished with the aid of high powered computers.

The solution-to this long standing problem is an analytical expression that is similar in

-form to the two-body solution. An analysis is presented in which the solution is com-

pared with the two-body solution, a proven numerical solution, and actual measured

satellite data. The solution is shown to be significantly more accurate than the two-body

solution. The theoretical accuracy of the solution is confirmed. The solution compares

extremely well with a proven numerical solution for at least 41 orbits with a relative error

on the order of P0. The solution compares extremely well with measured satellite data

for satellites in near Earth orbits. For a satellite in orbit at an altitude of approximately

1000 -kilometers, the solution reduces the error of the two-body solution by about 95%.

For satellites in orbit at semisynchronous and geosynchronous altitudes, the solution

reduces the error of the two-body solution by at least 50%. The solution is free of

singularities and is valid for all eccentricities and inclinations.
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I. INTRODUCTION

With the development of any new method or theory the question always arises on

whether the approach is valid or practical for ordinary use. This is particularly true in

the prediction of satellite motion. Ever since Sir Issac Newton's discovery of the law

of universal gravitation, new methods have been developed to better predict the motion

of the heavenly bodies. Usually the method contains one or more restrictions that limits

the practical use of the solution. The goal, of course, is to develop a solution that is
valid and possesses no restrictions. Recently, such a solution has been formulated.

This analysis continues the work that was begun by Snider [Ref. 1] and Sagovac

[Ref. 2]. From their research, a higher order universal solution of the motion of an

artificial satellite around an oblate planet was developed. The solution is free of

singularities aPd is theoretical valid for all orbital parameters. The purpose and scope

of this work is to compare the solution with proven numerical solutions and actual

measured satellite data in order to determine whether the theoretical work is valid and

practical.
The first chapter summarizes the development of the theory and presents the sol-

ution in its entirety. Also-included is a somewhat less accurate simplified solution. An

explanation of the solution near the critical inclinations is presented. The chapter con-

cludes with a discussion on the conservation of specific mechanical energy. The next

chapter describes the method of analysis and explains the type of integration routine

exercised in the evaluation. The method of comparison is presented next in which the

error parameters are described in detail. The results follow which include both a detailed

discussion and a graphic representation.

The analysis is objective in nature and designed to demonstrate both the advantages

and disadvantages of the theory and the solution. Before the solution can be applied

extensively, a general understanding of its strengths and weaknesses must be determined.



II. BACKGROUND

A. ORBITAL KINEMATICS

A reference system for a planet in spherical coordinates ( r, a, /3) is shown in Figure

1. The radial distance (r) is measured from the center of the planet (0) to the satellite

(S). The line (0 y) is in a direction fixed with respect to an inertial coordinate system.

For Earth, the line (0 y) is in the direction of the vernal equinox. The right ascension

angle (a) is measured in the planet's equatorial plane eastward from the line (0 Y). The

declination or latitude (P) is the angle measured northward from the equator. The po-

sition vector (r) of the satellite in the spherical coordinate system is:

r = r(coscccosfl) b,+r(sincccosfl) b 2 +r(sin3) b3  (1)

where ( b , b2, b3 ) are orthonormal base vectors fixed in the direction shown.

polar axis

equatorial- _ 3
plane b0

Figure 1. Spherical coordinate system.

A reference system for a satellite in polar coordinates (r, 0) within a rotating orbital

plane is shown in Figure 2. The satellite's position and velocity vectors are contained

within the orbital plane. The argument of latitude (0) is measured in the orbital plane

2



from the ascending node to the satellite. The inclination (i) of the orbital plane is the

angle measured between the equatorial plane and the orbital plane. The longitude of the

ascending node (f2) is measured from the line (0 y) to the ascending node. The as-

cending node lies on the line of nodes which form the intersection of the equatorial and

orbital planes.

orbital plane

equatorial plane . S

Figure 2. Orbital plane.

The basis (b, , b2, b3 ) may be transformed into another orthonormal basis
(B, , B2 , B3 ) by a succession of three rotations. First the basis ( b, , b,, b3 ) is rotated

about the b, direction by the angle Q. The basis is then rotated about the new first

coordinate vector by the angle i. The final rotation is about the new third coordinate

vector by the angle 0. The position vector (r) has only one component in the rotating

basis.

r = rB1  (2)

3



The components of r in-the fixed'basis are:

r = r(cosOcosf2-sinOcosisin2) b,
+ r(cos0sin 2+-sin 0cosicos 2) b2 +r(sin0sini) b3  (3)

Equating the components of equations (1) and (3), the following relations among
the angles ( a, f ) of the spherical. coordinate system and the astronomical angles ( i,
92,0 ) can be obtained.

sinf = sin0sini (4)

cosfl = cos 0 sec(a - a) (5)

The velocity (drdt) of the satellite is obtained by differentiating equation (2)*with
respect to time (t) which results in:

dr dr B, + r do (I + tan O cot d )B 2
-dt - dt dt -dOB (6)

Equations (2) and (6) represent the orbital kinematics of a satellite in the polar co-
ordinate system. The position and velocity vector expressions describe the motion of a
satellite in a particular reference system and provide the information needed to develop
the equations of motion in that system. These expressions are referenced to the true,
rather than mean, orbital plane and were originally formulated by Struble

[Ref. 3,4,51.

B. EQUATIONS OF MOTION

The motion of all objects is mathematically described by the equations of motion
that govern them. For an oblate planet, the expressions for the kinetic and potential
energies per unit mass of an orbiting satellite in spherical coordinates are respectively:

L[Or ++ ) 2 ds( (

V G I-- + 22 (l - 3 sin'f) (8)

4



In the above equations, (M) is the mass of the planet, (G) is the universal

gravitational constant, (R) is the equatorial radius of the planet, and (J2) is the coef-

ficient of the second zonal harmonic of the planet's gravitational potential. The gov-

erning equations of motion can be determined by substituting equations (7) and (8) into

Lagrange's equations which are represented by:

d (T- 1 --- (T-J' = 0 (9)
dt [(dq" aq

~dt}

where: q = a, r, and fl

Three equations result from Lagrange's equations which describe the motion of th .

satellite. The three equations are:

( cos =0 0

dt ~ dt}2 )2
d 2, r(dfl)2 rcos2fl ) = - (11)
dt2 dt dt ar

d \ ) ,J (dh o,. (12)d- ( r2 dl+ r2sin P cosf = (12)if

From the equations of motion, two integrals result which are:

2 2ol dc
r Cos dt -2#-! = constant (13)

T+ V = constant (14)

Equation (13) results from integrating equation (10) and equation (14) simply states

that the specific mechanical energy of the satellite remains constant. To change the in-

dependent variable from i to 0 , equations (1) , (2) , and (6) are used in conjunction

with equation (13) and some initial conditions to form:

5



dt r 2 dos i I +d n-I +tan -cot -- (15)dO- Ocosi 0  dO

'Letting u p,!r, and using equation (15), the remaining equations of motion (11)

- (12) can be rewritten as:

di - 2Ju sin 0 cos 0 sin i cos2idO -3 2 )(6
+ 2Ju sin 20 cos3 i

2d2U4+U 2 co2i , J2u o2i [2 d •C Cs i- AU Cs -- [ sin 0 cos 0 (3 co~-1)-
d. 2 dO

,.u -- sin 30 Cos O Cos i (3 -cos2i ) /{c a + 4Jic 2 sin 20 cos4i (17)

+ 4u j sin 0 cos8i}

d2 tan 0 di (18)
dO sin i dt

where: c = cos i0
s = sin i0

3J2R2

22po

Equation (18) results from uncoupling the equations for L2 and i. The angles 0

and i can be uncoupled by applying the fact that the orbital p!ane must contain the

velocity vector. The differential equations (16) - (18) are coupled by nonlinear terms and

apparently cannot be solved analytically. If the right sides of equations (16) - (18) are

expanded in a Taylor series expansion in powers of J, the equations simplify t':

(Ii -2.u sin 0 cos 0 sin i cos 3 2 3dO = c2 + 4Jlusc3 sin 0 Ocos 0+ O(J3) (19)
dO ~ C2

6



d d2u cos2i J cos2i -4u sin2 0 cos4i 2

02  U 2 2 c2

3)' •2_ si 0u co 0(d-3C )2 2 sin 20Cos 2i}dO 2 d+ zu--sin Ocos 0 (-3co2.1 -2.

4J?u-sin2O coi20'
+ 4 {u2[3sin20 (I - 2 c6s2i)- 1] (20)

C
+ 3u sin 20:cos 4i du2
+ 2 L+ U -T sin 0 cos 0 E4-'sin i +I sir20 a

3'cOs 2i)1 + (-L \2 sin2O cos2i + 0(J3 )
- dO)

dA2 _ 2Juc sin20 + 4j2u2c3 sinl0 + 0(J) (21)
dO

Each of the neglected terms in equations-(19) - (21) are indicated by the (0) symbols.

These are terms which will be multiplied by J to the third power or higher. Equations

-(19) - (21) are identical to those used as a stai .ing point in the analysis of Eckstein, Shi

and Kevorkian [Ref. 611.

C. SOLUTION

The initial breakthrough of an analytical solution of the equations of motion re-

presented by equations (15) , (19), (20) , and (21) was obtained by Danielson arid Snider

[Ref. 1, 71 . Further refinement of the solution was later formulated by Danielson,

Sagovac, and Snider [Ref. 2, 81 . The thlice authors, developed the solution through the

extensive use of an algebraic manipulation computer program called MACSY*1IA.

Through the use of an algorithm, MACSYMA was able to solve for the variables u (
or r ), i, £2, and dildO in terms of 0. T. solution includes all terms multiplied-by J

and excludes terms of order J and higher. in Z. r to maintain a solution of ord.r J

when 0 1/J, the solutions also need to apprupriately include terms multiplied by J'0.

The solutions which analytically dcmonstratc ., relative accuracy of order J'0 are:

7



Po{1+eo cosy + J o 52 + (3S 2) cos(2y- 20)
-i['o/S 2)]

eo[15(2 + e)s 4 - 14(4 + e"+ 24-] sil 2-( - 2)] sin[O + wol

q." -v2 - 4)

+ "T E(6 + + eo-,4(j + e- 00 + w~o) + "-"Cos("0 - coo)

2
e2 (5S 2 14) sin[.+3(0O so-1-6s2cos22

+ 2

+--[(5eo - 2)
2 - 2eo~] cos(y + Oo + co) + eos2 cos(0 o + wo)

22

22 2
"5 o s ) cos( - 00Ro) +e6 (32 - 32) cosy -2+ 2o (2eos e 0 2-- cos(y -0 0 + 3coo) + ( -3s2) cos(y -3 0+ o0 )

[ 2+ ) ' osy- 20 + - (92)cs- S2- o 200

4'

2

+ -- (4 - ~)cos~y - 00- coo) + - 2- (2 -1) cosCy + 200)

(6-Is) cosy + o20) + (2- 3s) cos(2y + 20)
+~ 2

+ - 1- [eo - (2 + 5eo) 2  cos 20 + 2 8) (9os 2y

3eos 2  
e0  28 cos(y- 400 + 2coo) -T(s + 1)cos(y+2o)

+ - 4 [2e- (14+ 5eo)S 2 .- cos(y - 300 + wo)] + O(J2, ,

8



y 0 - co+J{(S- 2)(0- 00)

22 2 2

__ 2

2

20s Ce 4-15'(5 _1)cs 2wo 2 S

-2 (5s 13) 6o(0 +w)+-- (15S -13) cos(300  )

+ [5(9eo' + 34)s + 4CU- 34)s - 56e]} + o(j 2,j 30,...)
96

I= io+scj -cs20-+.-cosy+26)+-ycos(y-2)- cos 200

cA4-- 15S) sinJ( 5s2 2)] sinl[2wo - JO-L 2)] (4

+ -1 212(5s 2 -4) 12(4

e-6s 4 4s +2SsinJ(2o + w)] o[coJO-L-)

D a sin 020o + -e0 sin2 0 - ) osifn(300 -sino)y- 0 )sin(o-+sin)} 2 5)
2 2 62

+ 15S4 2 ~ 1s- 4 w
L~ 12(s o ~ o( 0 +)+-j-(7 2 -4

62

+-j0 eo4 3 )osI(o- s2)}c? ,)-L(7SJ3 )

9



+ 2 s2  2 + 2  (26)

Ls 20eo(3 - 4S)

2 2+ °( -s)cosy.-20) +- 's2 00+: cosO + 20)

2 2 6

+ 2 cos(0 0 + -0)]+ o(J2,3o,_...)}do

D. SIMPLIFIED SOLUTION

As shown in equations (22) - ('";),if 0 is restricted such that 0 1/J, the solution

should be of order J and the nglected terms should be of order j2. For an Earth sat-

ellite, J< 312 x 10-', so for at least 100 revolutions the-relative error should be on the

order of 10-6 . If 0 is restricted such that 0 < 1 , all of the terms of order 0 in

equations (22) - (26) can be neglected if a relative e-ror of order J is desired. By neg-

lecting terms of order JA , the solution simplifies considerably to:

r = po Il+eocos 0-oo+J(0-0o)-"--2)

rE 20 /&
+ JVl-"7+3s e 1 ---'" ) 1 Lr2e-(2+5eo)s21cs20

2 2

+ 'e° (9s 2 - 4) cos(O + 300 - 2Co) + - (6 - 7s2) cos(O + 0o - 2coo)

2

22 SS) 0  2
+ - (6 cos(0 - 0 0 2w) co. + . _( 2 1, ) cos(O - 30o + 2 o)

22eo s_ cos(0 - 00 + 2wo) + --- (3s2 - 2) cos(O - 200 + coo)16 24
16 cos(O - 500 + 2o) + 7 ( -2)cs -00+o)

+o)3s
2) cos(O-cvo) (27)

L (I - 3 ) cos(O - 200 - coo) + "" (2 -3(24 -4
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~0_(9S2 24 IS+ 1 -8) cos(20 - 2(o0) +L-(6 1-s2 cos(30 - coo)

+ 1 [(5eg2 - 2)s' 2eo'J cos(0 + 00) +,eoS 2 COS(0 0 _ WO)

2o 2
+ 2(2 -3s2) cos(40 + 2co) + 0_- (3S2 -2)cs2o

3eos 2  e 2
8- - .-cos( - 400 + w)- -T-(S+ 1) cos((0 0)

-L ET2eO2 - (14 + 5eo) 2 cos(0 300) +S2 cos 200

2S2+ -L- E(6-+ 5e0) - 4(1 + e02)] cos(0 - 00)

+ eoS (300 - coo)J + O(J2, j20

io + scJ[-Lcos 20 + -L-cos(30 -wo) +- cos(0 + w)- cos 200

eo 1 2 2 (28)
- ~cos(300 - w0 )- --- cos(00 + coo) _+ O(J2,J j0,.)

L !o

+ eo sin(0 + wo) - 1 sin 200 + eo sin(00 - co 0) i(0 - w0) (29)2 2~ 0) n(36
2- sin(0 0 + coo)]

t 10 - 0 Jor 21+j[ (2-3s 2) cos 20 + e(s 2 _ 1) COS(0- COO)

+o(O 6 co(0 0) + C 0S(Is (30)
2 2

-e cs 20o s
2 1-



E. THE CRITICAL INCLINATIONS

As shown in equations (22) - (26), the solution appears to be well bounded for al-
most all inclinations. However, two particular inclinations immediately appear that may
produce a singularity. A possible singularity occurs when the inclination is equal to ei-
ther 63.43 degrees or 116.57 degrees. These two inclinations have produced mountains
of literature and are well known as the critical inclinations. However, if the solution is
replaced by the limit as the inclination approaches either critical inclination, the solution
remains finite. More specifically, the solution at either critical inclination is as follows:

r= po{l+eocosy+J[ 3+ el_5s) eo12

12S2 2~+ 7 [(6 + 5e0)s - 4(1 + eo)] cos(y - 00 + coo) + -- cos(300 - o0o)

22
+ g 2 -4) coso, + 360 -oo) + ( - 7S) cosC, + 0o _ (to)

+

+ 1 [(5eo2 - 2)S2 -2 2] cos(y±+00 +coo) + eoS2 cos(0+Coo)

22eos eo 2
- 16 cos(y - 500 + 3oo) + - (3s -2) cos(y - 200 + 2coo)

2 2 2eos e 2
- 16cos(y - 00 +3 +24o(3s 2  2) cos0y - 300 + 3vo)

e° e°0 ^S2 -3S) COSY + S2

(I - 3s2) cosCv - 200) + - -(2- 3 Cos 200 (31)

2

" (4 - 5) + (2 - ) cos- + 200)

.-(6 - I s2) cos(y + 20) + -!- (2 - 32) cos(2y + 20)
24 24

+ -- [2eo2 -(14+ 5e)s 2 1 cos -0 + "(s-8 cos

12

3eos 2 C
8 cos0y - 400 + 2coo) - -T S+1coy+2&0

24 E2e02-(14+5eo) -cosO,,- 300 +oo)]
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+ j 20[ " O- [15(2 + e2)s 4 - 14(4 + eo)S2 + 241 sin(O + wo)

24

2 21
+ 12 (15S2 - 14) sin 2cooj + o(J2, j6,.

y = o-co+,{(- --- 2)(O-Oo)}

2 2

+ {4 (130s 2 - 105s4 - 28) cos 2wo + -2- (15s 2 - 13) Cos 200 (32)

2 2
+ L -~-1S

2 -13 c(0+ )e S2(15 _ 13)c~s(Oo+oo)+--L-(15s - 13) cos(300 - coo)2 6

-- E5(9eo + 34)s4 + 4(9e02 - 34)s2 - 56e2j} + OJ,

i= io + scJ cos 20 + -L- os + 20) +--cos(y-2)

2 Cos 200 - -!o cOs(30 0 - COO) - - cos(Oo + CO) (33)
2

+j20 (14 - 15s2) sin 2o o + O( 2, J0,J...)

= +0- 0 i + -sin 2 0-e o siny y+ o sin(y+ 20)--osin( -20)

sin 200 + co sin(Oo - coo) - ___ s_ o - coo) - 2_ sin(o + oo) (34)

2
_,eos 2

eo s3s(30° - too) - s 2 cos 200 + - (6 - s2)l + O(J 2, J'0, ..

2f j (2- -S2) + OS CSY 2

e°(l -s2) ' s e°(3 - 4s2) ofv..2) 3)
+ 2 cos(, - 20) -:1--cos 200 + 6( - -cos + 20) (35)
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+ o cos(Oo + o0) + LO2cos(30o - coo)

2 2

+ J20 °s (15214)sin2(o0 +O(J2,3O,...)dO

Clearly, equations (31) - (35) demonstrate that the solution is indeed finite for both

critical inclinations. Equations (31) - (35) are only valid for the critical inclinations and

were first developed by Sagovac [Ref. 2] . The primary purpose in developing these

equations was over a concern in computer programming. Some computers have major

problems when a denominator approaches zero, and unlike humans, will not replace a

solution with its limit. Therefore, depending upon the accuracy of a computer,

equations (22) - (26) can replace equations (31) - (35) for inclinations near the critical

inclinations. It should be noted, however, that the solution itself is -valid and bounded

for all inclinations. It is the limitation of the computer that creates the singularity.

The- simplified solution which is shown in equations (27) - (30) , is valid for all in-

clinations. Since all terms of order JAO have been neglected, the troublesome denomi-

nators mentioned earlier do not appear.

F. SPECIFIC MECHANICAL ENERGY

For all satellites under the influence of conservative forces, the specific mechanical

energy remains constant. Therefore, an ideal analytical check of the solution would be

to see if indeed the specific mechanical energy at any time is a constant. This simple

check was performed by Danielson, Sagovac, and Snider [Ref 1, 2, 7, 8] by substituting

equations (22) - (26) into equations (7) and (8). The substitution yields:

Gjlf(l - eo) G!IJR2(l - 3 sin 2flo)T + + O0 j2, 3 ..)( 6
2po 2[r(1o)]3  (36)

The first two terms on the right side of equation (36) represent the initial specific

mechanical energy. All other terms multiplied by J in equations (22) - (26) combine to

zero when substituted into equations (7) and (8). Equation (36) demonstrates that by

neglecting all terms of order J2 and higher, the specific mechanical energ at any time

14



is precisely equalto the initial specific mechanical energy. Obviously, the solution sat-

isfies the requirement of constant specific mechanical energy.
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'II. METHOD OF ANALYSIS

A. ORBITAL PARAMETERS

1. Argument of Latitude ( 0)

Figure 2 illustrates that the position of a satellite at a particular time can be
described by the argument of latitude (0) , the radius magitude (r), the inclination ('),

and the longitude of the ascending node (92) . As shown in both the solution and the

simplified solution, r, i, and i are only functions of J and the argument of latitude (0)

Since J is a constant for all planets, a simple determination of these terms is trivial once

0 is known. However, the determination of 0 is not trivial. Although it would be ideal

for all of the equations to be analytical expressions, equations (26) , (30) , and (35)

contain an integral that must be evaluated in order for 0 to be determined. Herein lies
the key to the solution. Given an elapsed time between observations, how can d be

precisely determined? Since the initial angular momentum (h0) is known, this term can

be moved to the left side of equations (26), (30), and (35) to yield equations in the form

of:

(t - to)ho J'r2(J, 0)(l +f(J, 0))dO (37)
00

If r was not a function of 0, an evaluation of the right side of equation (37)

could easily be conducted that would yield an analytic expression. However, r is also a

function of 0 and the only practical techni.ue in evaluating the integral is through nu-

merical means.

Several numerical methods could be used to evaluate the integral depending on

the speed and accuracy one desires. Since accuracy and not speed is desired in this

analysis, a Romberg integration routine was used to evaluate the integral. Since the

right side of equations (26) , (30) , and (35) are sinusoidal in nature, the Romberg

-scheme converged quickly and accurately.
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Since 0 defines the upper limit of the integral, in order to arrive at a solution,

an initial 0 must be estimated. Once 0 is estimated, the integral can be numerically in-

tegrated and the result can be compared to the left side of equation (37). If the com-

parison is accurate within some predetermined error, the iteration is complete and 0 has

been determ-ined. If the comparison produces an error that is unacceptable, 0 can be

incremented either up or down and the integral can be reevaluated. Eventually, the it-

eration will converge and 0 will be determined. An algorithm of the iteration procedure

is as follows:

1. Estimate 0.

2. Evaluate the integral.

3. Compare the result with the left side of equation (37).

4. If outside the limit, go to (5). If within the limit, stop.

5. Increment 0 up or down as needed, go to (2).

The determination of 0 involves a combination of two errors. The first error is

contained in the numerical evaluation of the integral itself, while the second error in-

volves the comparison of the result of the integration with the left side of equation. (37).

Unfortunately, the errors do not linearly combine, but rather multiply since the numer-

ical evaluation of the integral is inherently nonlinear. In order to make the comparison

error meaningful, the evaluation of the integral must be made as precise as possible. In

order to avoid determining whether an error is due to computing or truncation errors,

the numerical technique used in this analysis did not rely on a step size constraint.

Therefore, the relative error, in general, can be specifically controlled. Since in this

analysis, accuracy and not speed is desired, the Romberg integration technique was uti-

lized. The Romberg technique does not depend on any specific step size and the evalu-

ation of the integral is determined through a converging algorithm. Also, the relative

error of the integration can be specifically controlled. In general, the relative error

normally demanded in the integral evaluation was on the order of 1012, and the relative

error of the comparison was on the order of 10-1. Since the computer program utilized

in the analysis was written for double precision accuracy, these types of relative errors

presented no significant problems. The double precision accuracN enabled the computer

program to calculate up to sixteen digit precision.
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2. Radius Magnitude (r)

From equations (22), (27), and (31), it can be seen that the radius magnitude

(r) is a function or J and 0. Once 0 is known, r can be evaluated. From the appearance

of equations (22), (27), and (31), it is not obvious how r will behave as the orbit-of a

satellite -progresses. However, from observations of actual satellite motion, it is clear

that the orbit should behave elliptically with r varying from a minimum value at

periapsis to a maximum value-at apoapsis. The magnitude oLJ plays an important role

and fortunately for most planets, oblateness effects act as a pertuibation in comparison

to the main gravitational force. Therefore, a large value of J causes iargcr v riationsin

r. Since equations (22), (27) , and (31) contain a number of sine and cosine terms, a

sinusoidal behavior should be expected.

3. Inclination (i)

The solution of the inclination is shown in equations (24) and (33) , and the

inclination for the simplified solution is shown in equation (28). In general, these three

solutions are quite similar. Again, once 0 is known, i can be evaluated easily. It can

be seen from equations (24) , (28) , and (33) , that i will vary slightly from an initial

-inclination as the orbit of a satellite progresses. Also, since a number of sine and cosine

terms are present, the variation should be sinusoidal in nature. From inspection it is

clear that the magnitude of the variation is dependent upon-the magnitude of J and the

initial inclination. The variation of the inclination should not behave in a diverging

fashion, but rather in an oscillatory fashion about some arbitrary mean inclination. This

behavior is consistent with observations of actual measured satellite data. The driving

factor in all inclination variations is the magnitude of J. Since for Earth, J2 is on the

order of 10- , these variations should be quite small.

4. Longitude of the Ascending Node ( 2)

The solution of the longitude of the ascending node (Q) is shown in equations

(25) and (34) , and the longitude of the ascending node for the simplified solution is

shown in equation (29). As expected, all solutions are quite similar. As with the case

of r and i, 92 can easily be determined once 0 is known. Unlike the behavior of r and

i, the variation of 92 is very predictable and highly meaningful. With the presence of 0

alone in equations (25), (29) , and (34) , Q possesses a linear relationship with 0 and
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as 0 increases with time, the vaiiation of 92 from 0 should be linear. Depending upon

the initial inclination, this variation will be either positive or -negative. This type of be-

havior is clearly consistent with the classical behavior known as nodal regression. For

an oblate planet, nodal regression is a linear property whose magnitude and direction

depends upon the radius magnitude and inclination of the-satellite. In equations (25),

(29) , and (34) , the radius magnitude is contained in the J term. Therefore, the mag-

nitude of the nodal regression is entirely dependent upon the magnitude of J. From the

analysis of the behavior of Q as 0 increases, the nodal regression behavior should be

extremely obvious.

B. ROMBERG INTEGRATION TECHNIQUE

The Romberg integration technique is a powerful integration method in which ar-

bitrary accuracy can be achieved in a relatively efficient manner. The method combines

any type of relatively inaccurate quadrature method -with a Richardson extrapolation in

order to quickly -and accurately converge on a solution. In this analysis, a simple

trapezoidal quadrature was initially used to estimate the integral and then a Richardson

-extrapolation was used to improve the integration to the desired accuracy level. The

trapezoidal quadrature first estimates the integral with a single interval. The estimate is

then improved by using 2 intervals, 4 intervals, 8 intervals, etc. For purposes of iden-

tification, the results can be labeled I.' , Io, , and so on. These results can be arranged

in column form in preparation for a Richardson extrapolation and each new member

represents the technique of halving the prior interval. The length of the column is de-

termined by the accuracy that one desires. Once the first column is arranged, a

Richardson extrapolation can be performed by the following equation.

I1n _ 1nh2
1n - 4 1- 1 -- 1 (38)

The values of 1' can be arranged in tabular form as shown in Table 1.
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Table 1. A SCHEMATIC OF ROMBERG INTEGRATION

0

12

I4 14 14

10, 1 12 13-

1616 1616
0l- 421 131 14

To test for convergence, the value represented by I," is compared with the value

represented by Ifj . If these two- values are within some predetermined error, then 4"
becomes the evaluation of the integral. If convergence has not been reached, then an-

other row is calculated and the process continues. An excellent example of the Romberg

integration technique is shown in Ferziger [Ref. 91 . In 'this example the following

solution of the integral is desired.

I = fied (39)

From elementary calculus, the exact solution is:

Iexac = 2.718281828 (40)

The technique of Romberg integration of the integral is shown in Table 2. The rel-

ative error of I, to I is 7.81 x 10- '. The relative error of I3 to I,, is 1.97 x 10- .

As can easily be seen, the integration is converging very nicely and the error found in the

final solution is less than the error demanded within the Romberg integration scheme

itself
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Table 2. ROMBERG INTEGRATION

1 1.859140914 -

2 1.753931092 1.718861152

4 1.727221905 1.718318842 1.718282688

8 1.720518592 1.718284155 1.718281842 1.718281829

The advantage of the Romberg integration technique over a simple quadrature
method is obvious. The number of intervals that must be evaluated is very small and
the relative accuracy is very high. In order to attain the accuracy that the Romberg
technique delivers, the trapezoidal method would need to divide the integral into several

more intervals. This would be highly inefficient. For smooth functions, the Romberg
technique is very effective and efficient. Since equation (37) is sinusoidal in nature and
thus relatively smooth, the Romberg integration technique was used to evaluate the in-

tegral. If equation (37) had not been so well behaved, another integration technique
might have been warranted. The Romberg integration scheme is the heart of the anal-
ysis and can be found in the computer program shown in Appendix E.
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IV. METHOD OF COMPARISON

A. NUMERICAL INTEGRATION COMPARISON

In order to verify that-the theory is valid for practical application, the solution must

be compared with proven numerical solutions and measured satellite data. By compar-

ing the solution with a numerical integration of the equations of motion, theoretical ac-

curacy can be specifically determined. As shown in equations (22) - (26), theoretically

the solution is accurate to order J 20 . A numerical integration comparison will determine

whether this prediction is correct. In order to verify the solution, the following param-

eters will be compared.

1. Delta.radius vector (ArI)

2. Earth arc angle (T)

3. Delta omega (A92)

4. Delta inclination (Ai)

5. Delta theta (AO)

6. Delta radius relative error (I Ar I /r)

7. Delta theta relative error (A00I)

8. Radial track error (RTE)

9. Along track error (,ITE)

10. Cross track error (CTE)

1. Delta Radius Vector

A graphical representation of the delta radius vector (IAr[) and the Earth arc

length (T) is shown in Figure 3. The delta radius vector is the magnitude of the vector

separating the solution radius vector (r) from the numerical integration radius vector

(r) . Mathematically, the delta radius vector can be expressed as:

Ar = r-r. (41)
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The delta radius vector describes in overall terms-the global error in the solution.

Another common name for this error is the Euclidean normed difference in ephemerides.

Although the delta radius vector provides ample information on the global error in the

solution, this error can -also be expressed by a different parameter that will be called

Earth arc angle.

Ar'

BO
C C,

Figure 3. Delta radius vector and Earth arc angle.

2. Earth Arc Angle

Earth arc angle (TI) is simply the angle between the two positions if viewed from

sea level on Earth. For simplicity, the position at sea level was chosen such that the arc

angle from the center of the Earth was bisected. By using the law of sines and cosines,

the Earth arc angle is easily determined. Since satellites are tracked b instruments on

the surface of the Earth, a bet.er feel for the global error can be attained by determining

the angle between the two positions. Most satellite tracking radars possess beamwidth
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and field of view limitations; therefore, 'V will provide useful information on whether the

solution is accurate enough fot satellite tracking radars.

3. Delta Omega, Delta Inclination, Delta Theta

A break down of the global error can be described in the errors of delta omega
(AK2) , delta inclination (Ai) , and delta theta (AO) . As mentioned previously, AQ2 will

provide an insight on the motion of the line of nodes,-and specifically-if nodal regression
is present. The change in inclination, will provide information on the movement and
stability of the -orbital plane. The parameter in which all errors are based, AO , will
provide much information on the source of the global error. It is clear that small errors
in AO will contribute significantly to the accuracy of the solution.

4. Relative Errors

The verification of the -solution will lie in the confirmation- of the relative errors.

The delta radius relative error and the delta theta relative error will demonstrate the ac-
tual accuracy of the solution. Both parameters, Ar and AO , demonstrate a theoretical
error of J2O. Therefore, the delta radius -relative error should be on the order of J 20,
while the delta theta relative error should be on the order of J2 . Comparisons of the

relative errors between the sujution and- the numerical integrati.in solution will provide
the evidence for theoreti.a! confirmation.

5. Track -Errors

Another michod to break down the global error is in terms of track errors.
Figure 4 shows a graphical representation of radial trac., error (RTE) , along track error
(ATE) , and cross track error (CTE) . These errors car better be described by referring
also to Figures I and 2. The radial track error is the error in the radial direction or in
the B, direction. The along track error is the arc length error in the plane defined by the
solution radius vector (r) and the B. direction. Together, these errors describe errors in
three orthogonal directions or planes as compared with some reference position. The
reference position in this case is the numerical integration solution. A mathematical
derivation of these errors is as follows:

Ar = r(r + Ar, 0 + AO, i + AO, 2 + A )-r(,, 0, i, 2) (42)
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Using equation (1),

Ar = (rn + Ar)(B1 + AB1) - rnB1  (43)

Ar = rnB 1+ArB 1 +rnAB 1 +ArAB 1 -rnB 1  (44)

Neglecting-higher order terms,

Ar = ArB + rnAB1  (45)

Continuing, defining AB1,

AB1 = (B1 ABI)B I + (B2 . ABI)B2 + (B3 . AB1)B3-  (46)

Using the rotation transformation and after performing considerable algebra,

B1 • AB1 = 0 (47)

B2 .AB = (AO + AQ cos i) (48)

B3 AB1 = (Ai sin 0 - A cos 0 sin1) (49)

Therefore, using equation (45),

Ar = (Ar)B1 + rn(AO + AK2 cos i)B2 + rn(Ai sin 0 - Af cos 0 sin )B3  (50)

From equation (50), the track errors can easily be defined.

RTE = (51)

ATE = r(A0 + Af2 cos i) (52)

CTE = r(Ai sin 0 - An cos 0 sin ti (53)
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A graphical representation of the track errors is shown in Figure 4.

ATE

~CTE

R TE

0

Figure 4. Track errors.

Examination of equations (51) - (53) demonstrates that the track errors divide

the global error into three distinct regions. Radial track errors obviously describe errors

in the radial direction. Along track errors are similar in nature to Earth arc angle errors,

but also include errors due to nodal regression. Cross track errors describe orbital plane

errors in terms of both inclination errors and errors due to nodal regression.

In general, all these parameters should give an excellent insight into the accu-

racy of the solution. Also included in the numerical comparison will be the simplified

solution and the two-body solution. The simplified solution has been previously pre-

sented. The two-body solution can easily be determined by simply setting J = 0 . The

analysis of the numerical comparison wiHl demonstrate the strengths and weaknesses of

all the different solutions.
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B. MEASURED DATA COMPARISON

In order to observe how well the solution models actual satellite motion, the sol-

ution will be compared with actual measured data from operational satellites. To
properly evaluate the solution, a wide range of orbit characteristics will be compared.
These characteristics include orbits of various altitudes, inclinations, and eccentricities.

Also included in this comparison will be the simplified solution, the two-body solution,

and if available, some particular numerical solutions.

The numerical solutions will consist of two forms. The first is a numerical solution
that only includes perturbations involving -2 , -3 , J4 , and Js . The second numerical

solution will include the following perturbation effects.

1. J2 ,J 3 ,J4, and Js

2. Atmospheric drag.

3. Sun gravitational effects.

4. Moon gravitational effects.

5. Solar pressure effects.

From the analysis, the accuracy of the solution and the simplified solution can be
compared to a numerical solution as well as to actual measured data. The weakness of

the two-body solution will also be demonstrated. In addition, the strengths of a well
modeled numerical solution will clearly be seen. The identical error parameters described

in the previous section will also be used in the measured data comparison. From this
comparison, the advantages and disadvantages of the solution in regard to actual satel-

lite motion will clearly be demonstrated.
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V. RESULTS

A. NUMERICAL INTEGRATION COMPARISON

To verify that the theory is valid for practical applications, the solution was coin-

pared with a proven numerical solution. A numerical integration computer program

called UTOPIA is currently in use at :he Colorado Center for Astrodynamic Research

(CCAR) located on the campus of the University of Colorado, Boulder, Colorado.

UTOPIA is primarily used to model a wide range of perturbations and can predict sat-

ellite motion with a high degree of accuracy. The UTOPIA computer program wa, de-

veloped at the University of Texas, Austin, Texas, and is currently in use at several

universities and research centers. The solution was compared with the UTOPIA sol-

ution for a satellite with the following initial conditions:

r = 7,3S6.IS km

io = 90.03 degrees
eo = 0.003991

wo = 224.3S degrees
00 = 104.05 degrees

n o = 322.63 degrees

AD = 54,205.IS km 2 Is

Po = 7,371.29 kin

to = 0.00 seconds

In general, these initial conditions represent a slightly retrograde orbit of small ec-
centricity at an altitude of approximately 1000 kilometers. Essentially, it is a polar orbit

at an altitude where several satellites are currently in motion. From the initial condi-

tions, the orbit should demonstrate a slight easterly nodal regression. But, since the in-

clination is so close to 90 degrees, some integration routines might predict zero nodi

regression. In this comparison, UTOPIA only modeled the J. perturbation; therefore,

the solution should compare well if the theo*y is valid. All error parameters depicted in

the comparison were calculated in the following manner.

A(ErrorParanzeter) = Theoretical Soluion - UTOPIA Nmncrical Sohion (54)
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All solutions were compared at one hour intervals over two separate periods of time.

One comparison is for a time period of one day while the second is for a time period of

three days. The three day comparison was constructed to illustrate the effect of long

term errors while the one day comparison allows for a more detailed analysis during the

first few hours of motion. The period of rotation for the satellite is about 105.26 minutes

which equates to approximately 13.68 orbits per day. The results of the numerical sol-

ution comparison are shown in Appendix A.

1. Delta Radius Vector Comparison

The comparison of the delta radius vector is shown in Figures 5, 6, and 7 in

Appendix A. Figure 5 includes the comparison of the solution, the simplified solution,

and the two-body solution to the numerical solution. If the solution matched the nu-

merical solution exactly, the delta radius vector would be zero. As shown in Figure 5,

the solution and the simplified solution match extremely well with the numerical solution

while the two-body solution contains gross errors.

A more detailed plot of the delta radius vector comparison is shown in Figures

6 and 7. In these figures, the two-body solution is excluded. The difference in the sol-

ution and the simplified solution can clearly be seen. The simplified solution produces

a diverging sinusoidal response about the solution. However, up to approximately four

hours of motion, the solution and the simplified solution are nearly identical. The

sinusoidal behavior of the simplified solution can be attributed to the fact that all terms

multiplied by J20 have been neglected. As 0 grows with time, these terms become sig-

nificant in the solution. As shown specifically in Figure 7, the average delta radius vec-

tor of the simplified solution clearly diverges from the solution.

Figures 5, 6, and- 7 also demonstrate that for at least one day, the delta radius

vector for the solution and the two-body solution are nearly linear as a function of time.

Other comparisons will determine whether this relationship holds true and will be shown

later. As mentioned earlier, the delta radius vector is a global error. As shown in Fig-

ures 5, 6, and 7, the solution compares well globally with the numerical solution and

demonstrates a great improvement over the two-body solution.
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2. Earth Arc Angle Comparison

The comparison of the Earth arc angle is shown in Figures 8, 9, and 10 in Ap-
pendix A. From inspection, these plots are nearly identical in appearance to the delta

radius vector plots. This is expected since both the delta radius vector and the Earth arc

angle represent global errors. Figure 8 clearly illustrates the large error generated by the

two-body solution. The two-body solution produces unsatisfactory long term satellite

position prediction. After one day, a tracking radar would have a difficult time detecting

a satellite with a position error of over 80 degrees.

Figures 9 and 10 present much more encouraging results. Again, the simplified

solution responds in a sinusoidal behavior about the solution. After one day, the posi-

tion error of the solution is only approximately 0.15 degrees. Clearly, the solution and

the simplified solution are superior to the two-body solution. Most tracking radars can

easily handle daily position errors of 0.15 degrees. In general, the solution and the sim-

plified solution agree very well with the numerical solution.

3. Delta Omega Comparison

The comparison of the delta omega angle is shown in Figures 11 and 12 in Ap-

pendix A. At first glance, the solution and the simplified solution in Figure 11 appear

not to agree well with the numerical solution. However, the scale of delta omega is

multiplied by 10'. The numerical solution parallels the two-body solution nearly ex-

actly and predicts almost no change in Q . In other words, the numerical solution pre-

dicts no nodal regression. Easterly nodal regression is represented by a positive delta

omega; therefore, it is clear that the solution and the simplified solution predict greater

nodal regression than the numerical solution.

On a larger scale, all three solutions are essentially identical. Since the initial

inclination is so close to 90 degrees, small discrepancies are not surprising. The delta

omega plot does, however, invoke confidence in the solution. Although the initial in-

clination is very close to 90 degrees, the solution, the simplified solution, and the nu-

merical solution predict easterly nodal regression. This result is significant. Even initial

inclinations close to 90 degrees produce nodal regression in the correct direction for the

solution, the simplified solution, and the numerical solution.
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4. Delta Inclination Comparison

The comparison of the delta inclination angle is shown in Figures 13 and 14 in

Appendix A. On a larger scale, all of the solutions compare very well. On the scale

shown in Figure 10, the two-body solution and the numerical solution are nearly iden-

tical. The solution and the simplified solution oscillate about an error of approximately

-2.0 x 10-' degrees. Obviously, this error is extremely small. In general, the solution

and the numerical solution agree very well.

An interesting aspect of the delta inclination comparison is the sinusoidal be-

havior of the solution and the simplified solution. This type of behavior is precisely what
was predicted in the earlier analysis. Figure 14 demonstrates that this behavior contin-

ues for even longer periods of time. On a larger scale, this type of motion would not

be detectable.

5. Delta Theta Comparison

The comparison of the delta theta angle is shown in Figures 15, 16, and 17 in

Appendix A. This comparison confirms the results found in the earlier comparisons.

The two-body solution produces very large errors, while the solution and the simplified

solution agree very well with the numerical solution. Figures 16 and 17 again illustrate

the typical sinusoidal response of the simplified solution about the solution. Since the

delta theta error produces all other errors, the excellent results found in the earlier

comparisons are now not surprising.

6. Delta Theta Relative Error Comparison

The comparison of the delta theta relative error is shown in Figures 18, 19, and

20 in Appendix A. As shown in Figure 18, the two-body solution demonstrates a rela-

tive error of 2.3J, while the relative errors of the solution and the simplified solution are

much smaller. In more detail, Figures 19 and 20 indicate that the relative error of the

solution is 2.8P. This result confirms the theoretical prediction that .ne delta theta

relative error of the solution would be on the order of P. Figures 19 and 20 illustrate

that initially the relative error of the simplified solution is also on the order of J. But

as 0 increases with time, the relative error grows in a sinusoidal fashion. This result is

expected since the simplified solution neglects all the terms multiplied by PA . In gen-
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eral, the results shown in Figures 18, 19, and 20 confirm the theoretical relative accuracy

of delta theta that was predicted-in the earlier analysis.

7. Delta Radius Relative' Error Comparison

The comparison of the delta radius relative error is shown in-Figures 21, 22, and

23 in Appendix A. As shown in Figure 21, the two-body solution produces a relative

error that is-linear in time-and proportional to 2.3.10. Again, the relative errors of the

solution and the simplified- solution are-magnitudes smaller.

Figures 22 and 23 present in more detail the relative errors of the solution and
the simplified solution. The relative error of the solution is very linear and proportional

to 2.8J'0. The relative error of the simplified solution is sinusoidal in nature and di-
verges from the solution. However, for up to four-hours of motion, the relative error

of the solution and the simplified solution are nearly indistinguishable. Again, the- re-

sults from this comparison confirm the theoretical prediction that the delta radius rela-

tive error of the solution would be on the order of 20.

8. Radial Track Error Comparison

The comparison of the radial track error is shown in Figures 24, 25, and 26 in

Appendix A. As shown in Figure 24, the two-body solution oscillates about an error
of approximately -11.0 kilometers, while the solution and the simplified solution both

produce errors that are dramatically smaller. From inspection, the two-body solution
also appears to be slowly converging as time increases.

In Figures 25 and 26, the solution and the simplified solution produce con-

trasting behaviors. While the solution remains relatively constant, the- simplified sol-

ution slowly diverges from zero. These two different responses continue even after three

days of motion. Again, the neglected J20 terms cause the significant divergence of the

simplified solution. Not surprisingly, the solution and the simplified solution are clearly

superior to the two-body solution.

9. Along Track Error Comparison

The comparison of the along track error is shown in Figures 27, 28, and '9 in

Appendix A. The results presented in this comparison parallel the results found in the

earlier comparisons. Since the inclination is so close to 90 degrees, the A.Q contribution
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is negligible and the AO contribution strongly influences the responses. As a result, the

along track error comparison is practically a mirror image of the delta theta comparison.

10. Cross Track Error Comparison

The comparison of the cross track error is shown in Figures 30 and 31 in Ap-

pendix A. The cross track error is strongly influenced by Ai and AQ. Since the two-

body solution produced good results with these two parameters, it is not surprising that

the two-body solution agrees well with the numerical solution. Fortunately, the errors

produced by the solution and the simplified solution are also very small. The solution

produces a maximum cross track-error of approximately ± 0.5 kilometers after one day

of motion, and approximately ± -1.3 kilometers after three days of motion.

Clearly in this comparison, the two-body solution is superior. However, the

large errors produced by the two-body solution in the other comparisons easily over-

whelm these results. In global terms, the two-body solution is no match for either the

solution or the simplified solution.

B. MEASURED DATA COMPARISON

The solution was compared with actual measured satellite data to determine the al-

titude band where the theory works best. The measured satellite data was obtained from

the First Satellite Control Squadron (ISCS) located at Falcon Air Force Base, Colorado.

The First Satellite Control Squadron tracks several satellites for the Air Force and was

able to supply measured data for three separate satellites. The three satellites are cur-

rently in motion and occupy orbits that are labeled Near Earth, Semisynchronous, and

Geosynchronous, respectively. All error parameters compared in the earlier numerical

comparison were also compared in this comparison using the measured data as a refer-

ence.

Included in all the comparisons were the solution, the simplified solution, the two-

body solution, and two numerical solutions. The two numerical solutions were also

supplied by the First Satellite Control Squadmon and are labeled Spacom 1 and Spacom

2, respectively. The Spacom I solution includes all perturbation effects, while the

Spacom 2 solution only includes the Earth's harmonic perturbations. All error param-

eters in this comparison were calculated in the following manner.
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A(ErrorParameter) = Test Solution - Measured Data Solution (55)

Unfortunately, the First Satellite Control Squadron only records measured data
when an update of their numerical solution is required. Routine updates are usually

conducted after about seven days of motion. Therefore, satellite data for one month

usually consists of only four data points. Although more data points are needed for a

more detailed analysis, a long term analysis can still be conducted. The analysis of each

type of orbit will be presented separately.

1. Near Earth Orbit Comparison

The near Earth orbit comparison possesses the following initial conditions.

ro = 7,776.58 km
io = 98.81 degrees
eo = 0.0003071
oo = 9.57 degrees
00 = 149.14 degrees

0o = 37.10 degrees

ho = 53,664.37 km2/s
Po = 7,224.89 -km
to = OOOOZ 26 July 1990

The initial conditions of this satellite represent a retrograde orbit of small ec-
centricity at an altitude of approximately 850 kilometers. The-period of rotation for the

satellite is about 101.89 minutes which equates to approximately 14.13 orbits per day.

From the initial conditions, J2 should be the dominant perturbation. The orbit should
demonstrate noticeable easterly nodal regression. If the theory is valid, both the sol-
ution and the simplified solution should agree well with the numerical solutions and the

measured data.

The results of the near Earth orbit comparison are shown in Figures 32 - 43 in

Appendix B. As shown in the figur,., the solution and the simplified solution agree very
well with both the Spacom I solution and the measured data. The fact that the solution
and the simplified solution produce such excellent results verifies that J, is the dominant
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perturbation- for this satellite. Figures 32 - 43 also demonstrate the larger errors

produced by-the two-body solution. In almost every comparison, both the solution and

the simplified solution are far superior to the two-body solution.

One surprising result is the poor comparison produced by the Spacom 2 sol-

ution. In every comparison the Spacom 2 solution either models the two-body solution

exactly or produces results that are inferior to the two-body solution. It is clear that the

Spacorn 2 solution does-not model the Earth's harmonic forces correctly. An explana-

tion for the poor results cannot be determined in this analysis. A detailed analysis of the

force modeling in the Spacom 2 solution must be completed in order to adequately ex-

- plain the unsatisfactory results.

The delta omega comparison in Figure 34 demonstrates the easterly nodal re-

gression produced by the solution, the simplified solution, the Spacom 1 solution, and

the measured data. The two-body solution represents zero nodal regression. Figure 35

presents the-delta omega comparison at a much smaller scale and excludes the two-body

solution. In this figure, much more detail can be observed.

There is only one comparison in which the results are mixed. The radial track

error comparison in Figure 40 indicates that the solution produces a small improvement

over the two-body solution while the simplified solution actually produces a greater er-

ror. In comparison with the along track errors, these errors are small. It is interesting,

however, that the radial track error comparison produces such mixed results. In general,

both the solution and the simplified solution produce results that are in excellent agree-

ment with the measured data for this near Earth satellite.
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2. Semisynchronous Orbit Comparison

The semisynchronous orbit comparison possesses the following initial condi-
tions.

ro = 26,407.70 kin
io = 63.66 degrees
e= 0.005860

cod = 318.19 degrees
00 328.49 degrees
0= 92.13 degrees

ho = 102,892.59 krn2]s
Po = 26,559.96 km
to = OOOOZ 22 March 1990

The initial conditions of this satellite represent a direct orbit of small eccentricity
at an altitude of approximately 20,000 kilometers. The period of rotation for the satellite
is about 717.96 minutes which equates to approximately 2.01 orbits per day. An im-
portant aspect -of the orbit is that the initial inclination is very close to the critical incli-

nation of 63.43 degrees. Although the initial inclination is not exactly that of the critical

inclination, an evaluation of the solution and the simplified solution near this important
inclination can be made. From the initial conditions, the orbit should demonstrate

substantial westerly nodal regression. Also, at this altitude, the dominance of the J2

perturbation should be diminished. Other perturbations that are not modeled should

make a considerable contribution to the errors in the comparison. If the theory is valid,

both the solution and the simplified solution should show a great improvement over the

two-body solution.

The results of the semisynchronous orbit comparison are shown in Figures 44 -
53 in Appendix C. As predicted earlier, the solution and simplified solution produce

results that are superior to the results produced by the two-body solution. Figures 44
and 45 present the global errors of all the solutions. In global terms, the solution and

the simplified solution reduce the error of the two-body solution by nearly one half. In

effect, the J, perturbation accounts for approximately one half the error produced by the

two-body solution. The remaining error which is represented by the solution and the

simplified solution is caused by other perturbing forces. Unfortunately, the results of the

Spacom 2 solution were not available.
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The delta omega comparison in Figure 46 demonstrates the easterly nodal re-

gression produced by the solution, the simplified solution, the Spacom 1 solution, and

the measured data. Again, the two-body solution represents zero nodal regression. It

is clear that at this altitude, the J2 perturbation produces -the majority of the nodal re-

gression. The delta inclination comparison in Figure 47 indicates that the solution and

the simplified solution produce results that are not much better than the results

produced by the two-body solution. However, the error after 30 days of motion is ex-

tremely small. On a larger scale, the solutions would seem identical. Since the inclina-

tion is very near the critical inclination, these results produce more evidence in support

of the theory. Clearly, the solution and -the simplified solution are- bounded at this in-

clination. The delta-theta comparison in Figure 48 demonstrates that the majority of the

error produced by the solution and the simplified solution originates in the delta theta

error. It is clear that the two-body solution underestimates the value of 6 while the

solution and the simplified solution overestimate the value of 0.
The relative error comparisons are shown in Figures 49 and 50. While the delta

theta relative erroi for the solution, the simplified solution, and the two-body solution
is approximately 15.0 x 10- ', the relative error produced by the Spacom I solution is far

superior. This result is expected since the Spacom 1 solution models several more in-
fluential perturbations. The delta radius relative error comparison again demonstrates

in global terms the amount of improvement that the solution and the simplified solution

provide over that of the two-body solution.

The track error comparisons in Figures 51 - 53 produce mixed results. While

the two-body solution produces less radial and along track errors, the solution and the

simplified solution produce much less cross track error. In comparison with the along

track and cross track errors, the radial track errors are small. The poor results produced

by the solution and the simplified solution in the-along track error comparison is due

primarily to the large error in A0 . The very large error produced by the two-body sol-

ution in the cross track error comparison is due primarily to the very large error in AQ.

In summary, although the solution and the simplified solution are superior to

the two-body solution, the Spacom I solution models the satellite motion more precisely.

However, the primary reason that the solution and the simplified solution are superior

to the two-body solution is due exclusively to a better modeling of nodal regression or

the angle 2). It is clear that the solution and the simplified solution model the J2 per-

turbation extremely well. The Spacom I solution is expected to perform better since it

models more perturbing forces.
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3. Geosynchronous Orbit Comparison

The geosynchronous orbit comparison possesses the following initial conditions.

ro = 42,156.57 km-
io = 1.09 degrees
eo = 0.0002341

coo = 320.06 degrees
0 = 331.32 degrees

00 = 334.85 degrees

ho = 129i644.14 km 2Is

Po = 42,166.25 km
to = OOOOZ 21 July 1990

The initial conditions of this satellite represent a direct orbit of small eccentricity
at an altitude of approximately 35,800 kilometers. The period-of rotation for the satellite
is about 1436.69 minutes which-equates to approximately 1.00 orbit per day. Since the

initial inclination is slightly greater than zero, the orbit should demonstrate westerly

nodal regression. However, since the altitude is so large, other perturbing forces that
are not modeled may influence nodal regression. At a geosynchronous altitude, the
magnitude-of other perturbing forces approach that of J2 . Since at this altitude the ef-
fect of J2 is so diminished, some comparisons of the solution, the simplified solution, and
the two-body solution may be nearly identical. As a result, the theory may not be any

better than the two-body theory for satellites in a geosynchronous orbit.
The results of the geosynchronous orbit comparison are shown in Figures 54 -

63 in Appendix D. The global error comparisons are shown Figures 54 and 55. In
global terms, the solution and the simplified solution produce results that are surpris-

ingly superior to -the results produced by the two-body solution. Evidently, for this sat-
ellite, the /2 perturbation is still quite dominant. However, the other comparisons may

present a different picture. Once again, the Spacom 2 solution generates very poor re-

sults.

The delta omega comparison in Figure 56 indicates that the actual perturbing

forces produce easterly nodal regression. Conversely, the solution and the simplified
solution predict westerly nodal regression. It is obvious that other perturbing forces
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influence the nodal regression of this satellite. Although the Spacom I solution is su-

perior, even this accurate numerical solution has trouble predicting the value of a . The

solution and the simplified solution also produce poor results in the delta inclination
comparison in Figure 57. All solutions, except for the Spacom 1 solution, produce

identical results. Again, on a larger scale, all of the solutions would seem nearly identi-

cal. However, this detailed analysis does demonstrate a weakness in the theory. The

delta theta comparison in Figure 48 indicates that the solution and the simplified sol-

ution are inferior to all solutions including the two-body solution. Clearly, other per-

turbing forces are at work.

The relative error comparisons are shown in Figures 59 and 60. The delta theta

relative error comparison simply repeats the results found in the delta theta comparison.

However, the delta radius relative error comparison is much more reassuring. Again, in
global terms, the solution and the simplified solution produce better results than the

two-body solution.

The track error comparisons in Figures 61 - 63 produce mixed results. The ra-

dial track error comparison indicates that initially the Spacom I solution is inferior to

all other solutions. However, after 21 days of motion, Spacom 1 is the superior solution.

Once again, the radial track errors are small when compared to the along and cross track

errors. The clue to the favorable global results of the solution and the simplified solution
is found in the along and cross track error comparisons. The solution and the simplified

solution perform much better than the two-body solution in the along track error com-
parison. Although the two-body solution is superior to the solution and the simplified

solution in the cross track error comparison, the difference is small. It is clear that the
solution and the simplified solution are superior to the two-body solution due to a much

smaller along track error.
In summary, although the solution and the simplified solution are superior to

the two-body solution, other perturbing forces greatly influence the satellite's motion.

At this altitude, the solution and the simplified solution simply do not model the satel-

lite's motion well. Other perturbing forces must be modeled at this altitude if proper

satellite position prediction is desired.
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VI. CONCLUSIONS AND RECOMMENDATIONS

An analysis was -conducted on a perturbation solution of the main problem in arti-
ficial satellite theory. The purpose of the analysis was to compare the solution with
proven numerical solutions and actual measured satellite data in order to determine if
the theoretical work is valid and practical. From the analysis, the-following conclusions

can be made.

1. The solution and the simplified solution are both significantly more accurate than
the two-body solution. The relative error of the two-body solution is on the order
of JO while the relative error of the solution and the simplified solution is on the
order of AG.

2. The real physical effects of the orbit are easily distinguishable in both the solution
and the simplified solution.

3. The solution and the simplified solution compare extremely well with a proven
numerical solution for at least 41 revolutions with a relative error on the order ofj20.

4. The solution and the simplified solution compare extremely well with actual meas-
ured satellite data for at least 297 revolutions at altitudes where the -2 perturbation
dominates ( e.g., near Earth orbits ). For a satellite in orbit at an altitude of around
1000 kilometers, the solution and the simplified solution reduce the error of the
two-body solution by approximately'95%.

5. The solution and the simplified solution compare less favorably with actual meas-
ured- satellite data at semisynchronous and geosynchronous altitudes. At these al-
titudes, however, the solution and the simplified solution reduce the error of the
two-body solution by at least 50%.

6. The solution and the simplified solution are free of singularities and are valid for
all orbital parameters.

Clearly, the solution and the simplified solution model the J2 perturbation very well.
The equations are easy to implement and can provide quick and accurate predictions of
satellite motion. However, other types of analytical solutions exist that are more accu-

rate than the solutions described here.
One such solution was developed by Coffey and Alfriend [Ref. 10] through re-

search that was conducted by Dep.'. [Ref. II, Coffcy and Deprit [Ref. 12], and
Alfriend and Coffcy [Ref. 13] . The solution is called the Analitic Orbit Prediction
Program generator or (AOPP). Although the program is very accurate, AOPP exten-
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sively utilizes four different Hamiltonian transformations. As a result, the real physical

effects of the orbit are not easily distinguishable.

The beauty of the solution and the simplified solution is their similarity in form to

the well known two-body solution and the fact that a satellite's position can be easily

predicted by evaluating only one integral. Once 0 has been determined, all other orbital

parameters can be calculated easily. The structure of the solution and the simplified

solution is ideal for implementation with onboard spacecraft computers.

Before the solutions can be adapted for practical applications, more examination
and testing of the theory is required. In order to provide more confidence in the theory,

the following recommendations are suggested.

1. The solution and the simplified solution need to be compared-to a numerical inte-
gration of the equations of motion for at least 100 revolutions to confirm the the-
oretical accuracy for long term satellite motion.

2. The solution and the simplified solution need to be compared to several more di-
verse sets of actual measured satellite data.

3. To increase precision, the solution needs to include the higher order zonal har-
monics of the gravitational potential ( e.g., J3 , , J, etc. ).

4. For spacecraft computer implementation, the Lagrangian coefficients of the state
transition matrix need to be determined.

For onboard spacecraft navigation, computers make use of the state transition ma-
trix. Currently the Lagrangian coefficients of the two-body solution are the only matrix

elements that have been determined. An excellent formulation of the two-body state

transition matrix is shown by Battin [Ref. 141. Once the Lagrangian coefficients of the

solution are developed, onboard spacecraft navigation can be greatly improved.
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APPENDIX A. NUMERICAL SOLUTION COMPARISON RESULTS
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APPENDIX C. SEMISYNCHRONOUS ORBIT COMPARISON RESULTS
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PROGRAM COL02
C
o
C *
-C * MAIN PROGRAM
-C *
C
-C

IMPLICIT DOUBLE PRECISION (A-I,M-Z)
CHARACTER*20 LINE
DIMENSION M(l00),MD(l00),E(' 00),W(1O0),WD(10O),OM(100),OMD(100)
DIMENSION 1(100),ID(100),F(10),FD(O0),EC(100),ECD(100),A(100)
DIMENSION R( 100) ,H( 100) ,N( 100) ,TH( 100) ,THD( 100)
DIMENSION RF(l00) ,IF(100) ,IFD(100) ,OMF(100) ,OMFD(100),THF(100)
DIMENSION THFD( 100) ,P( lo) ,JORBIT( 100) ,DR( 100) ,DID( 100) ,DTHD(.100)
DIMENSION DOMD(100) ,RX(100) ,RY(100),RZ(100) ,RFX(-100) ,RFY(1i00)
DIMENSION RFZ(100) ,DRV(100) ,ARC(100) ,ARCD(l00),DAY(100) ,HX(100)
DIMENSION HY(100),HZ(100),VX(100),VY(100),VZ(100),DT(100),NX(100)
DIMENSION NY(100),NZ(100) ,RDV(100),EX(100),EY(100) ,EZ(100)
DIMENSION NDE(100),EDR(100),V(100),HT(100) ,RDRF(100) ,INTA(100)
DIMENSION ROMA(iCO) ,TH~'o(100) ,ATE(l00) ,CTE(100)
COMMON/OBLATE1/DAY,RXRY,RZ ,VX,VY,VZ,DT,HX,HY,HZ,Nx,NY,NZ,K,KX
COMMON/OBLATE2/RDV,R,V, FX,F,\,EZ,IU,NDE,EDR,H,N,E,P,I,OM,W,F
COMMON/OBLATE3/PI,EC,l,,Ht,'I,ER,TH,THD,RTD,MD,WD,OM"D,ID,ECD
COMMON/OBLATE4/FD,LINE, J,THF,THFD, IF, IFD,OMF,OMFD,RF, INT,ROM
COMMON/OBLATE5/RJ,DR,DID,DTHD,DOMD,ESTERR,ACTERR,TERROR,JVER
COMMON/OBLATE6/RFX, RFY ,RFZ ,ARC, ARCD , DRF,DRV,RJ2 , JN, JORBIT
COMMON/OBLATE7/ INTA ,ROMA ,THJO,AT, CTE

C
10 PRINT--,'ENTER VERSION ( SOLUTION = 1, SIlf'LB = 2, TWO BODY =3 )

READ* ,JVER
IF(JVER. EQ. 1. OR. JVER. EQ. 2. OR.JVER. EQ. 3)THEN
GOTO 20

ELSE
GOTO 10

ENDIF
C
20 PRINT*,'ENTER FIRST POINT'

R E A D,K
PRINT--e,'ENTER FINAL POINT'
READ*,KK

C
PRINT", 'ENTER RJ2'
READ*,RJ2
IF(RJ2. EQ. 1. ODO)TiHEN

RJ2=0. 00108263D0
ENDIF

C
LINE- - - - - - - - - - -
PI=3. 141592653589793238462643D0
RTD=180. ODO/PI
ER=6378. 137D0
HTS=1. 0iO/806. 812D0
MU=3. 986004 36D5

C
OPEN(UNIT=2, STATUS='OLD', FILE='/COLO2 OUT A')
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OPEN(UNIT=3, STATUS=&OLD', FILE='/COLO2 DS8 A')
OPENf-UNIT-=4, STATUS='OLD', FILE='/COLO2O DSS B')

C
CALL DATA
CALL ELEMENTS
CALL PINITIAL

C
J=1
WRITE(6,6000) 'POINT = ,
WRITE(6,6000) 'INTEGRATE COMPLETED'
WRITE(6,6000) 'FORMULA COMPLETED'
WRITE(6,6000) 'INERTIAL COMPLETED'

C
DO 30 J = K, KK
WRITE(6,6000) 'POINT =',
CALL INTEGRATE
WRITE(6,6000) 'INTEGRATE COMPLETED'
CALL FORMULA
WRITE(6,6000) 'FORMULA COMPLETED'
CALL INERTIAL
WRITE(6,6000) 'INERTIAL COMPLETED'

30 CONTINUE
CALL RESULTS

C
CLOSE(UNIT=-2)
CLOSE(CUNIT=-3)
CLOSEC UNIT-=4)

C
6000 FORMAT(3X,A,13)

STOP
END

C
C
C
C * SUBROUTINE DATA
C
C
C

SUBROUTINE DATA
IMPLICIT DOUBLE PRECISION (A-I,M-Z)
CHARACTER*20 LINE
DIMENSION M(100),MD(100),E(100),W(100),WD(100),OM(100),OMD(100)
DIMENSION I(100),IDC100),F(100),FD(100),EC(100),ECD(100),A(100)
DIMENSION R(100) ,H(100) ,N(100) ,TH(100),THD(100)
DIMENSION RF(100),IF(100) ,IFD(100) ,OMF(100) ,OMFD(100) ,THF(100)
DIMENSION ThFPD(100),P(100) ,JORBIT(100) ,DR(-100),DID(100) ,DTHID(100)
DIMENSION DOMD(100) ,RX(100),RY(100) ,RZ(100) ,RFX(100) ,RFY(100)
DIMENSION RFZ(100) ,DRV(100),ARC(100) ,ARCD(100) ,DAY(100),HX(100)
DIMENSION HYC100),HZ(100),VX(l00),VY(100),VZ(100),DT(10o),NX(100)
DIMENSION NY(100),NZC100),RDV(J.Oo),EX(100),EY(100),Ez(1o0)
DIMENSION NDE(100) ,EDR(100) ,V(100),HT(100),RDRF(100) ,INTA(100)
DIMENSION MONTI( 100) ,DATE( 100) ,IOUR( 100) ,MIN( 100),SEC( 100)
DIMENSION ROIA( 100) ,TJ{JO( 100) ,ATiEC100) ,CTE( 100)
COXMJ ON/OBLATE1/DAY,RX,RY,RZ,VX,VY,VZ,DT,IIX,H[Y,HZ,NX,NY,NZ,K,KK
COMMON/OBLATE2/RDV,R,V,EX,EYv,EZ,M1U,NDE,EDR,H,N,E,P,I,OM,W,F
COMMON/OBL.ATE3/PI,EC,M,A,HT,ER,Th-I,THID,RTD,M]D,WD,OMID,ID,ECD
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COMMON/OBLATE4/FD,LINE,J,THF,THFD, IF, IFD,OMF,OMFD,RF, INT,ROM
COMMiON/OBLATE5/RJ,DR,DID ,DTHD,DOMD,ESTERR,ACTERR,TERROR,JVER
COMMON/OBLATE6/RFX,RFY,RFZ ,ARC,ARCD,RDRF,DRV,RJ2,JN,JORBIT
COMMQN/OBLATE7/INTA,ROMA,THJO,ATE,CTE

C
o READ IN EMPHERIS DATA
C

OPEN(UNIT=1I, STATUS='OLD', FILE=t/COLO2 DAT', ACTION='READ')

DO 10 J1 = 1, KK
READ(1,*) MONTH(J) ,DATE(J) ,HOUR(J) ,MIN(J) ,SEC(J)

RX(J)=RX(J)/1000. ODO
RY(J)=RY(J)/1000. 0DO
RZ(J)=RZ(J)/1000. ODO
READ(1,*) VX(J) ,VY(J) ,VZ(J)
VX(J)=VX(J)/ 1000. 0DO
VY(J)=VY(J)/ 1000. ODO
VZ(J)=VZ(J)/1000. ODO

10 CONTINUE
C
C CONVERT PARAMETERS
C

DO 20 J = 1, KK
DAY(J)=DATE(J)+((3600. ODO*HOUR(J)+

+ (60. ODO*MIN(J)+SEC(J))))/86400. ODO
DT(J)=(DAY(J)-DAY( 1))'*24. ODO*3600. ODO

20 CONTINUE
C

CLOSE(UNIT=1l)
C

RETURN
END

C
C
C
C * SUBROUTINE ELEMENTS

C
SUBROUTINE ELEMENTS
IMPLICIT DOUBLE PRECISION (A-I,M-Z)
CHARACTER*20 LINE
DIMENSION M(100),MD(100),E(100),W(100),WD(100),OM(100),OMD(loo)
DIMENSION I(100),ID(100),F(100),FD(100),EC(l00),ECD(100),A(loo)
DIMENSION R(100),H(100),N(100),TH(100),THD(100)
DIMENSION RF( 100) ,IF( 100),IFD( 100) ,OMF( 100) ,OMFD( 100) ,THF( 100)
DIMENSION THFD(100) ,PC100) ,JORBIT(100),DR(100) ,DID(100) ,DTHD(100)
DIMENSION DOMID(100),RX(100) ,RY(100),RZ(100) ,RFX(100),RFY(100)
DIMENSION~ RFZ( 100) ,DRY( 100) ,ARC( 100) ,ARCD( 100) ,DAY( 100) ,HX( 100)
DIMENSION HY(100),HZ(100),VX(100),VY(100),VZ(100),DT(1oo),NX(100)
DIMENSION NY(100),NZ(100),RDV(100),EX(100),EY(.Oo),EZ(100)
DIMENSION NDE(100),EDR(100) ,V(100) ,HT(100) ,RDRF(100) ,INTA(100)
DIMENSION ROMA(100) ,THJO(100) ,ATEC100) ,CTE(100)
COMMON/OBLATE1/DAY,RX,RY,RZ,VX,VY,VZ,DT,HX,HY,HZ,NX,NY,NZ,K,KK
COMMON/OBLATE2/RDV,R,V,EX,EY,EZ,MU,NDE,EDR,H,N,E,P, I,OM,W,F
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COMMQN/OBLATE3/PI ,EC,M,A,HT,ER,TH,THD,RTD,MD,WD,OMD, ID,ECD
COMMION/OBLATE4/FD,LINE,J,THF,THFD, IF, IFD,OMF,OMFD,RF, INT,ROI
COMMON/OBLATE5/RJ,DR,DID ,DTHD,DOMD,ESTERR,ACTERR,TERROR,JVER
COMMON/OBLATE6/RFX,RFY,RFZ,ARC,ARCD,RDRF,DRV,RJ2,JN7,JORBIT
COIIION/OBLATE7/INTA,ROMA,THJQ,ATE ,CTE

C
C CALCULATE R,V,E,H,N,P,I,OM,W,F,EC,M,HT,TH
C

DO 10 J = 1, KK
CALL CROSS(RX(J) ,RY(J) ,RZ(J) ,VX(J) ,VY(J) ,VZ(J) ,HX(J) ,HY(J),

+ HZ(J))
CALL CROSS(O. ODO,O. ODO,1. ODO,HX(J),HY(J),HZ(J),NX(J),NY(J),

+ NZ(J))
CALL DOT(RX(J),RY(J),RZ(J),VX(J),VY(J),VZ(J),RDV(J))
R(J)=DSQRT(RX(J)*RX(J)+RYCJ)*RYCJ)+RZ(J)*RZ(J))
V(J)=DSQRT(VX(J)*VX(J)+VY(J)*VY(J)+VZ(J)*VZ(J))

EY(J)=( (V(J)*V(J)-MU/R(J))*RY(J) -RDV(J)*VYCJ) )/MIJ
EZ(J)=((V(J)*V(J)-iU/R(J))*RZ(J)-RDV(J)*VZ(J))/MU
CALL DO(N(J),N(J),NZ/(J),EXZ(J),EY(J)EZ(J)D))
CALL DOT(EX(J),EYZ(J),EZ(J),RX(J),RY(J),RZ(J),NER(J))

H(J)=DSQRT(HXJ)*HX(J)+HY(J)*HY(J)+HZ(J)*HZ(J))
N(J)=DSQRT(NX(J)*NX(J)+NY(J)*NY(J)+NZCJ)*NZ(J))
E(J)=DSQRT(EX(J)*EX(J)+EY(J)*EY(J)+EZ(J)*EZ(J))
P(J)=H(J)*H(J)/MU
I(J)=DACOS(HZ(J)/H(J))
QM(J)=DACOS(NX(J)/N(J))
W(J)=DACQS(NDE(J)/(N(J)*E(J)))
F(J)=DACOS(EDR(J)/(E(J)*R(J)))
IF(NY(J). LE.0. ODO)THEN

ONf(J)=2. 0D0*PI-OM(J)
ENDIF
IF(EZ(J). LE. 0. ODO)THEN

ENDIF
IF(RDV(J). LE. 0. ODO)TIIEN

F(J)=2. ODO*PI-F(J)
ENDIF
EC(J)=DACOS((E(J)+DCOS(F(J)))/(1. ODO+E(J)*DCOS(F(J))))
IF(F(J). GE. PI)THEN

EC(J)=2. ODO*PI-EC(J)
ENDIF
M(J)=EC(J) -E(J)*-'DSIN(EC(J))

AT=(MTJU/(N(1)*N( 1)) )**(1. ODOI 3.ODO)
HT(J)=R(J)-ER.
RJ=3. OD0*RJ2*ER*-ER/( 2. ODO*P( 1:P( 1))
TH( 5)=F( J)+W( J)
THD( J)=TH( J)*RTD

20 IF(THD(J).GT. 360. ODO)THEN
TIID(J)=THD(J) -360. ODO
GOTO 20

END IF
THC J)=THD(5) /RTD

C
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C CONVERT ORBITAL ELEMENTS TO DEGREES
C

MD(J)=M(J)"RTD
WD(J)=W(J)"RTD
OMD( J)=OM(J)*RTD
ID(J)=I(J)*RTD
ECD(J)=EC(J)*RTD
FD(J)=F(J)RTD
THD(J)--TH(J)*RTD

10 CONTINUE
RETURN
END

C
C
C A
C * SUBROUTINE CROSS *
C *
C
C

SUBROUTINE CROSS(AX,AY,AZ,BX,BY,BZ,CX,CY,CZ)
IhPLICIT DOUBLE PRECISION (A-I,M-Z)

C

C CALCULATE THE CROSS PRODUCT OF 'WO VECTORS A AND B
C

CX=AY-*BZ-AZ*BY
CY=AZ*BX-AX*:BZ
CZ=AX*BY-AY*BX

C
RETURN
END

C

C
C * SUBROUTINE DOT
C

C

SUBROUTINE DOT(AX,AY,AZ,BX,BY,BZ,ADB)
IMPLICIT DOUBLE PRECISION (A-I,M-Z)

C
C CALCULATE THE DOT PRODUCT OF TWO VECTORS A AND B
C

ADB=AXC*BX+AY--BY+AZ *B Z
C

RETURN
END

C
C
C -

C SUBROUTINE PINITIAL
C **

C
C

SUBROUTINE PINITIAL
IMPLICIT DOUBLE PRECISION (A-I,M-Z)
CIIARACTER*:20 LINE
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DIMENSION M(100),MD(100),E(100),W(100),WD(100),OM(100),OMD(100)
DIMENSION I(100),ID(100),F(100),FD(100),EC(100),ECD(100),A(100)
DIMENSION R(100),H(100),N(100),TH(100),THD(100)
DIMENSION RF(100) ,IF(100) ,IFD(100) ,OMF(100) ,OMFD(100) ,THF(100)
DIMENSION THFD(100) ,P(100) ,JORBIT(100) ,DR(100) ,DID(100),-DTHD(100)
DIMENSION DOMID(100),RX(100),RY(100),RZ(100),RFX(100),RFY(100)
DIMENSION RFZ(100),DRV( 100) ,ARC( 100) ,ARCD( 100) ,DAY( 100) ,HX( 100)
DIMENSION HY(100),HZ(100),VX(100),VY(100),VZ(100),DT(100),NX(100)
DIMENSION NY(100),NZ(100),RDV(100),EX(100),EY(100),EZ(100)
DIMENSION NDE(100) ,EDR(100) ,V(100) ,HT(100) ,RDRF(100) ,INTA(100)
DIMENSION ROMA( 100) ,THJO( 100) ,ATE( 100) ,CTE( 100)
COMMION/OBLATE1/DAY,RX,RY,RZ,VX,VY,VZ,DT,HX,HY,HZ,NX,NY,NZ,K,KK
COMMfON/OBLATE2/RDV,R,V,EX,EY,EZ,MU,NDE,EDR,H,N,E,P, I,OM1,W,F
COMMON/OBLATE3/PI ,EC,M,A,HT,ER,TH,THD,RTD,MD,WD,OMD,ID,ECD
COMMON/OBLATE4/FD ,LINE, J ,THF ,THFD, IF, IFD ,OMF ,OMFD ,RF, INT ,ROM
COMMON/OBLATE5/RJ ,DR,DID ,DTHD,DOMD,ESTERR,ACTERR,TERROR,JVER
COMMON/OBLATE6/RFX,RFY,RFZ ,ARC ,ARCD,RDRF,DRV,RJ2,JN,JORBIT
COMMON/OBLATE7/INTA,ROMA ,THJO,ATE ,GTE

C
C PRINT INITIAL ORBITAL ELEMENTS
C

WRITE(6,'(/)')
WRITE(2,'(/)')
WRITE(6,6000) 'ORBITAL ELEMENTS'
WRITE(2,6000) 'ORBITAL ELEMENTS'
WRITE(6,6100) LINE
WRITE(2,6100) LINE
WRITE(6,6200) :M = ',MD(1),'N = ',N(1),'EI ',= )

+ 'w = 'WD(l), OM = 'OMD(1),' , D=)
+ 'EC = ,ECD(l),'A =,IA(1), IR = Rl)
+ 'HT = 'HT(l),'H = ',H(1),'F = 'F~)
+ 'TH = ,TIID(1)
WRITE(2,6200) 'M = ',MD(1),'N = ',N(1),'E = ,l)

+ 1w = IWD(l),lOM = 'OMD(l),' =i II~)
+ 'EC = ',ECD(l),'A =',A(l), 'R = ,~)
+ 'HT = ,HT(l),'H = ',H(.1),'F FDl)
+ 'TH = 'THD(l)

C
6000 FORMAT(3X,A)
6100 FORMAT(3X,A20/)
6200 FORMAT(13(3X,A5,D18. 10/)!)
C

RETURN
END

C
C
C *
C * SUBROUTINE INTEGRATE *
o
C
C

SUBROUTINE INTEGRATE
IMPLICIT DOUBLE PRECISION (A-I,M-Z)
CHARACTER*20 LINE
DIMENSION M(100),MD(100),E(100),W(100),WD(100),OM(100),OMD(100)
DIMENSION I(100),ID(100),F(100),FD(100),EC(100),ECD(100),A(100)
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DIMENSION R( 100) ,H( 100) ,N( 100) ,TH( 100) ,THD( 100)
DIMENSION RF(100) ,IF(100) ,IFD(100) ,OMfF(100),OMFD(100) ,THF(100)
DIMENSION THFD(.'0),P(100),JORBIT(100),DR(100),DID(100),DTHD(100)
DIMENSION DOME '0) ,RX( 100) ,RY( 100) ,RZ( 100) ,RFX( 100) ,RFY( 100)
DIMENSION RFZ(O ),DRV(100),ARC(100),ARCD(100),DAY(100),HX(100)
DIMENSION HY(10,j),HZ(100),VX(100),VY(100),VZ(10Q),DT(100),NX(100)
DIMENSION NY(100),NZ(100),RDV(100),EX(100),EY(100),EZ(100)
DIMENSION NDE(100),EDR(100),V(100),HT(100),RDRF(100),INTA(100)
DIMENSION ROMAC 100) ,THJO( 100) ,ATE( 100) ,CTE( 100)
COIMON/OBLATE1/DAY,RX,RY,RZ,'YX,VY,VZ,DT,HX,HY,HZ,NX,NY,NZ,K5 KK
COMMON/OBLATE2/RDV,R,V,EX,EY,EZ,MU,NDE,EDR,H,N,E,P, I,0MW,F
COMMON/OBLATE3/PI,EC,M,A,HT,ER,TH,THD,RTD,MD,WD,OMD,ID,ECD
COMMON/OBLATE4/FD,LINE,J,THF,THFD,IF,IFD,OMIF,OMFD,RF,INT,ROM
COMMION/OBLATE5/RJ,DR,DID ,DTHD ,DOMD ,ESTERR ,ACTERR ,TERROR, JVER
COMMION/OBLATE6/RFX ,RFY ,RFZ ,ARC ,ARCD ,RD,DRV,RJ2 ,JN, JORB IT
COMMON/OBLATE7/INTA,ROMA,THJO,ATE,CTE

C
C EQUATE INITIAL VALUES
C

THF( 1)=TH( 1)
THFD( 1)=THD( 1)
IF( 1)=I( 1)
IFD( 1)=ID( 1)
OMF( 1)=OM( 1)
OMFD(1)=OMD(1)
RF(1)=R(1)

C
C ESTIMATE UPPER BOUND OF THETA
C

THF(J)=TH(J)+(J-1)*0. 57D0*2. ODO*PI ROM00080
C
C INITIALIZE
C
C (1X1O)-12

ESTERR=0. 00000000000 iDO
INT=DT(J)*H( 1)
DTHF=0. 1745329251994

C (1X1O)-10
TERROR=0. 000000000 iDO

C
10 CALL ROMBERG ROM00190

ACTERR=-INT-ROM
IF(ACTERR. LT.0. ODO)THEN
THF(J)=THF(J) -DTHF
GOTO 10

END IF
TEMPTHF=-THF( J)
GOTO 20

C
30 CALL ROMBERG

ACTERR=INT-ROM
20 IF(ACTERR. GE. 0. ODO)THEN

IF((ACTERR/INT). LE. ESTERR)THEN
GOTO 40

ELSE
TEMPTHF=-THF( J)
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THF( J) THF( J) +DTHF
GOTO 30

ENDIF
ELSE

DTHF=DTHF/2. ODO
THF( J)TEMPTHF+DTHF
GOTO 30

END IF
C
40 INTA(J)=INT

ROMA(-J)=ROM
RETURN
END

C
o
o C
o SUBROUTINE ROMBERG*
C *
C
C

SUBROUTINE ROMBERG ROM00190
IMPLICIT DOUBLE PRECISION (A-I,Mi-Z)
CHARACTER*20 LINE
DIMENSION M(100),MD(100),E(100),W(100),WD(100),OM1(100),OMD(100)
DIMENSION I(100),ID(100),F(100),,FD(100),EC(100),ECD(100),A(100)
DIMENSION R(1OO),H(1O0),N(100),T{ 100),THD(10O)
DIMENSION RF(100) ,IF(100) ,IFD(100) ,OMF(100) ,OMFD(100) ,THF(100)
DIMENSION THFD( 100),P( 100) ,JORBIT( 100) ,DR( 100) ,DID( 100) ,DTHD( 100)
DIMENSION DOMD(100),RX(100),RY(100),RZ(100),RFX(100),RFY(100)
DIMENSION RFZ( 100) ,DRV( 100) ,ARC( 100) ,ARCD( 100),DAY( 100) ,HX( 100)
DIMENSION HY(100),HZ(100),VX(100),VY(100),VZ(100),DT(100),NX(100)
DIMENSION NY(100),NZ(100),RDV(100),EX(100),EY(100),EZ(100)
DIMENSION NDE( 100) ,EDR( 100)-,V(100) ,HT( 100) ,RDRF( 100) ,INTA( 100)
DIMENSION ROMAC 100) ,THJO( 100) ,ATE( 100) ,CTE( 100)
COMMION/OBLATE1/DAY,RX,RY,RZ,VX,VY,VZ,DT,HX,HY,HZ,NX,NY,NZ,K,KK
COMMON/OBLATE2/RDV,R,V,EX,EY.,EZ,MU,NDE,EDR,H,N,E,P,I,OM,Wi,F
COMMON/OBLATE3/PI ,EC,M,A,HT,ER,TH,THD,RTD,MD,WD,OMD, ID,ECD
COMMON/OBLATE4/FD,LINE,J,THF,THFD,IF,IFD,OMIF,OMFD,RF,INT,ROM
COMMON/OBLATE5 /RJ ,DR ,DID, DTHD ,DOMD ,ESTERR ,ACTERR ,TERROR, JVER
COMIMON/OBLATE6/RFX ,RFY,RFZ ,ARC, AROD ,RDRF ,DRV ,RJ2 ,JN, JORB IT
COMMON/OBLATE7/INTA,ROMA,THJO,ATE ,CTE

C
EXTERNAL FUNC R0M00460

C
C INITIALIZE VARIABLES R0M00560
C

HS=THF(J) -THF( 1) ROM005 70
FUNCA=FUNC(RJ,A( 1),1(1) ,E(1) ,W(1) ,TH( 1),THF(1) ,JVER)
FUNCB=FUNC(RJ,A( 1),1(1) ,E(1) ,W(1) ,TH(1) ,THF(J) ,JVER)
P( 1)=HS*(FUNCA+FUNCB)/2. ODO ROM005 80
JM=1 R0M00590

C ROM00610
C BEGIN THE ROMBERG LOOP. ROM00620
C

DO 10 JN = 1, 100 ROM00630
OLDINT=P( 1) ROM00640
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HH=HS R0M00670
SS=O.ODO R0M00680
TT=-THF( 1)+HH/2. ODO R0M00690
DO 20 L = 1, JM R0M00720

T=Tr R0M00730
SS=SS+FUNC(RJ,A(l),I(1),E(i),W(l),TH(1),T,JVER) R0M00740
fTT-HH- ROM00 750

20 CONTINUE R0M00760
SUM=HH*SS R0M00780
P(JN-I1)=(P(JN)+SUM)/2. 0DO ROM00800
D=1. 0Db R0M00830
DO 30 JK = JN, 1, -1 R0M00840*

D=4. 0D0*D R0M00850
P(JK)=P(JK+1)+(P(JK+1)-P(JK))/(D-.-ODO) ROIIO0860

30 CONTINUE R0M00870
-ERROR=( PC1) -OLDINT) ROM00900
IF(JN. GE. 10)THEN
IF (DABS(ERROR/OLDINT). LB.TERROR)THEN R0M00930
GOTO 40

ENDIF
ENDIF
HS=HS/2. ODO R01100940
JM=JM*2 R0M00950

10 CONTINUE ROM009 60
40 ROM=P(1): R0M00970

RETURN
END

C
C
C*
C FUNCTION FUNC
C *
C
C

FUNCTION FUNC(RJ,A1,11,E1,W1,TH1l,THFJ,JVER)
IMPLICIT DOUBLE PRECISION (A-I,O-Z) ROM00030

C
EXTERNAL RADIUS

C
S=DSIN( II)
S2=S*S
S4=52*52
56=S4*52
E2=E 1*E 1

C
RAD=RADIUS(RJ,A1,11,E1,Wl,THI,THFJ,JVER)

C
C F ( SOLUTION)
C

IF(JVER. EQ. 1)THEN
C

Y1=112. ODO-75. ODO*S6+260. OD0*S4-296. ODO*S2
Y2=RJ*THFJ*(2. 5D0*S2-2. 0Db)
Y3=2.ODO*Wl-Y2
Y4=24. ODO*(5. 0D0*S2-4.ODO)*(5. 0DO*S2-4. 0Db)
Y5=E2*S2*( 14.0Db- 15. ODO*S2)*( 15. OD0*S2- 13. 0Db)
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Y6=9. ODO*E2+34. ODO
Y9=12. ODO*(5. ODO*S2-4. ODO)
Y12=9. ODO*E2-34. ODO

C
YF=(2. 5DO*S2-2. 0DO)*(THFJ-TH1)+E2*Y1*DSIN(Y2)*DC0S(Y3)/Y4

C
YS=Y5*DCOS( 2. ODO*W1)/(2. ODO*Y9)+

+ E1*S2*( 15. ODO*S2-13. ODO)*DCOS(TH1+W1)/2. ODO+
+ E1*S2*( 15. ODO*S2-13. ODO)*DCOS(3. ODO*TH1-W1)/6. ODO+
+ S2*( 15. ODO*S2-13. ODO)*DCOS(2 .ODO*TH1)/2. ODO+
+ (5. ODO*Y6*S4+4. ODO*Y12*S2-56. ODO*E2)/96. ODO

C
Y=THFJ-Wl+RJ*YF+RJ*RJ*THFJ*YS

C
F=(2. ODO-3. ODO*S2)*DCOS(2. ODO*THFJ),/2. ODO+

+ El*(S2-1)*DCOS(Y)+E1*(3. QDO-4. ODO*S2)* DCOS(Y+2. ODO*THFJ)/6. ODO+
+ E1'(1. ODO-2. ODO*S2)*DCOS(Y-2. ODO*THFJ)/2. ODO+S2-1. ODO+
+ E2*S2*( 15. ODO*S2-14. ODO)*DSIN(Y2)*DSIN(Y3)/Y9+
+ S2*DCOS( 2. ODO*TH1)/2. ODO+E1*S2*DCOS(3. ODO*TH1-W1)/6. ODO+
+ E1*S2*DCOS(TH1+W1)/2. ODO

C
END IF

C
o F ( SIMPLIFIED SOLUTION)
C

IF(JVER. EQ. 2)THEN
C-

F=(2. ODO-3. ODO*S2)*DCOS(2. ODO*THFJ)/2. ODO+
+- E1*(S2-1)*DCOS(THFJ-W1)+
+ E1*(3. ODQ-4. ODO*S2)*DCOS(3. ODO*THFJ-Wl)/6. ODO+
+ El*(1. ODO-2. ODO*~S2)*DCOS(THFJ+W1)/2. ODO+S2-1. ODO+
+ S2*DCOS(2. ODO*TH1)/2. ODO+E1*S2*DCOS( 3. ODO*TH1-Wl)/6. ODO+
+- E1*S2*DCOS(TH1+1?1)/2. ODO

C
ENDIF

C
C F ( TWO BODY SOLUTION)
C

IF(JVER. EQ. 3)THEN
F=O. ODO

ENDIF
C
C FUNCTION
C

FUNC=RAD*RAD*(1. ODO+RJ*F)-
C

RETURN
END

C
C
C
o FUNCTION RADIUS
C
C
C

FUNCTION RADIUS(RJ,A1,I1,E1,W1,TI1,TFJ,JVER)
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IMPLICIT DOUBLE PRECISION (A-I,O-Z) ROM00030
C
C CALCULATE E, SINE, AND COSINE FUNCTIONS
C

S=DSIN(I1)
S2=S*S
S4=S2*S2
S6=S4*S2
C=DCOS( Il)
C2=C*C
SC=DSIN( I1)*DCOS( Il)
E2=El*El
PO=A1*(1. ODO-E2)

C
C RADIUS BOTTOM ( SOLUTION)
C

IF(JVER. EQ. 1)THEN
C

Y1=112. ODO-75. ODO*S6+260. ODO*S4-296. ODO*S2
Y2=RJ*TFJ*c(2:-5D0*52-2. ODO)
Y3=2. ODO*W1-Y2
Y4=24. ODO*(5. ODO*S2-4. ODO)*(5. ODO*S2-4. ODO)
Y5=E2*S2*( 14. ODO-iS. ODO*S2)*( 15. ODO*S2-13. ODO)
Y6=9. ODO*E2+34. ODO
Y9=12. ODO*(5. ODO*S2-4. ODO)

C
Y11=15. ODO*(2. ODO+E2)*S4-14. ODO*(4. ODO+E2)*S2+24. ODO

Y12=9. ODO*E2-34. ODO

YF=(2. 5DO*S2-2. ODO)*(TFJ-TH1)+E2*Y1*DSIN(Y2)*DCOS(Y3)/Y4
C

yS=y5*DCOS( 2. ODO*W1)/( 2. ODO*Y9)+
+ E1*S2*( 15. ODO*S2-13. ODO)'*DCOS(TH1+W1)/2. ODO+
+ E1*S2*( 15. ODO*S2-13. ODO)*DCOS(3. QDO*THI-W1)/6. ODO+
+ S2*( 15. ODO*S2-13. ODO)*DCOS(2. ODQ*TH1)/2. ODO+
+ (5. ODO*Y6*S4+4.-ODO*Y12*S2-56. ODO*E2)/96. ODO

C
Y=TFJ-W1+RJ*YF+RJ*rRJ*TFJ*YS

C
RF1=1. ODO-1. 5D0*S2+E2*(1. ODO-1. 25D0*S2)-

+ ((2. ODO+5. ODO*E2)*S2-2. ODO*E2)*DCOS(2. ODO*TFJ)/12. ODO+
+ E2*(9. ODO*S2-8. ODO)*DCOS(2. ODO*Y)/12. ODO+
+ E1*(-11. ODO*S2+6. ODO)*DCOS(Y+2. ODO*TFJ)/24. ODO+
+ E2*( -3. ODO*S2+2. ODO)*DCOS(2. ODO*Y+2. ODO*TFJ)/24. ODO+
+ E2*(3. ODO*S2-2. ODO)*DCOS(2. ODO*Y-2. ODO*TFJ)/8. ODO+
+ E1*Yl1*DSIN(Y2)*DSIN(TFJ+Wl)/Y9

-C
RF2=E2*S2*( 15. ODO*S2-14. ODO)*DSIN(Y2)*DSIN(Y3)/(O. 5D0*Y9)-

+ E2*S2*DCOS(Y-TH1+3. ODO*W1)/16. ODO+
+ E2*(3. ODO*S2-2. ODO)*DCOS(Y-3. ODO*TH1+3. ODO*W1)/24. DO-
+ E2*S2*DCOS( Y-5. ODOI-TH1+3. ,ODO*W1) /16. ODO+
+ El*(3. ODO*S2-2. ODO)*DCOS(Y-2. ODO*TH1+2. ODO*W1)/4. ODO-
+ 3. ODO*E1*S2*DCOS(Y-4. ODO*TH1+2. ODO*W)/8. ODO-
+ E1*(S2+1. ODO)*DCOS(Y+2. ODO*'W1)/4. ODO

C
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RF3=((5. ODO*E2-2. ODO)*S2-2. ODO*E2)*DCOS(Y+TH1+W1)/8. ODO+
+ ((5. ODO*E2+6. ODO)*S2-4. ODO*(E2+1. ODO))*DCOS(Y-THI1W1)/4. ODO+
+ (2. ODQ*E2-S2*(5. ODO*E2+14. ODO))*DCOS(Y-3. ODO*TH1+W1)f 24. ODO+
+ E2*(9. ODO*S2-4. ODO)*DCOS(Y+3. ODO*TH1-W1)/48. DO+
+ E2*(6. ODO-7. ODO*S2)*DCOS(Y+TH1-W1)/8.ODO+
+ E2*(4..ODO-5. ODO*S2)*DCOS(Y-TH1-W1)/16. ODO+
+ E1*(2. ODO*S2-1. ODO)*DCOS(Y+2. ODO*THI)14. ODO

c
RF4=El*(1. ODQ-3.'ODO*S2):*DCOS(Y-2. ODO*TH1)14. ODO+

+ E1*1(2. ODQ-3. ODO*S2)*DCOS(Y)/4. ODO+
+ E1*S2*DCOS(TH1+Wl)+S2i"DCOS(2. ODO*TH1)+
+ E1*S2*DCOS(k3. ODO*THI-W1)/3. ODO

c
RFB=1. ODO+E 1*DCOS( Y)+RJ*(RF1+R2+P3+RF4)

END IF
C
o RADIUS BOTTOM ( SIMPLIFIED SOLUTION)
C

IF(JVER. EQ. 2)THEN
c

RF1=1. ODO-1. 5D0*S2+E2*(1. ODQ-1. 25D0*S2)-
+ ((2. ODO+5. ODO*E2)*S2-2. ODO*E2)*DCOS(2. ODO*TFJ)/12. ODO+
+ E2*(9. ODO*S2-8. ODO)*DCOS(2. ODO*(TFJ-Wi))/12. ODO+
+ E 1*( -11. ODO*S2±6. ODO )*DCOS( 3. ODO*TFJ-W1 ) /24. ODO+
+ E2*( -3. ODO*S2+2. ODO)*DCOS(4. ODO*TFJ-2. ODO*W)/24. ODO+
+ E2*(3. ODQ*S2-2. ODO)*DCOS(2. QDO*W1)/8. ODO-
+ E2*S2*DCOS(TFJ-TH1+2. ODO*W1)/16. ODO

RF2=E2*(3. ODO*S2-2. ODO)*DCOS(TFJ-3. ODO*TH1+2. ODO*W1)/24. DO-
+ E2*S2*DCOS(TFJ-5. ODO*TH1+2. ODO*W1)/16. ODO+
+ El*(3. ODO*S2-2. ODO)*DCOS(TFJ-2. ODO*TH1+W1l)/4. ODO-
+ 3. ODO*E1*S2*DCOS(TFJ-4. ODO*TH1+Wl)/8. aDO-
+ E1*(S2+1. ODO)*DCOS(TFJ+W1)/4. ODO+
+ ((5. ODO*E2-2. ODO)*S2-2. ODO*E2)*DCOS(TFJ+TH1)/8. ODO+
+ ((5. ODO*E2+6. ODO)*S2-4. ODO*(E2+1. ODO))*DCOS(TFJ-THI)/4. DO

C
RF3=(2. ODO*E2-S2*(5. ODO*E2+14. ODO))*DCOS(TFJ-3. DO*TH1)/24. DO+

+ E2*(9. ODO*S2-4. ODO)*DCOS(TFJ+3. ODO*TH1-2. ODO*W1)/48. DO+
+ E2*(6. ODO-7. ODO*S2)*DCOS(TFJ+THI-2. ODO*Wl)/8. ODO+
+ E2'*(4. ODO-5. ODO*S2)*DCOS(TFJ-TH1-2. ODO*Wl)/16. ODOI
+ El*(2. ODO*S2-1. ODO)*DCOS(TFJ+2. ODO*THI-W1)/4. ODO+
+ E1*(1. ODO-3. ODO*S2)*DCOS(TFJ-2. ODO*TH1-W1)/4. ODO+
+ El*(2. ODO-3. ODO*S2)*DCOS(TFJ-Wl)/4. ODO

C
RF4=E1*S2*DCOS(TH1+Wl)+S2*DCOS(2. ODO*TH1)+

+ El*S2*DCOS(3. ODO*THl-W1)/3. ODO
C

RFB=E1*DCOS(TFJ-W1+RJ*(TFJ-TH1)*( 2. 5DO*S2-2. ODO) )+
+ 1. ODO+RJ*(RFI+RF2+RF3+RF4)

* C
ENDIF

C
C RADIUS BOTTOM ( TWO BODY SOLUTION)
C

IF(JVER. EQ. 3)TIIEN
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RFBl. ODO+E1*DCOS(TFJ-W1)
ENDIF

C
C RADIUS=PO/RFB

C
RETURN R0M00410
END R0M00420

C
o

o SUBROUTINE FORMULA
C'

C
SUBROUTINE FORMULA
IMPLICIT DOUBLE PRECISION (A-I,M-Z)
CHARACTER*20 LINE
DIMENSION M(1OIMD(100),E(100),W(100),WD(1O0),OM(100),OMID(1o0)
DIMENSION I(100)_ ID(100),F(100),FD(JO0),EC(100),ECD(100),A(100)
DIMENSION R(100),H(100),N(100),TH(100),THD(100)
DIMENSION RF(100)4TF(100),IFD(100),OMF(100),OMFD(100),THF(100)
DIMENSION THFD(1OQ) ,P(100) ,JORBIT( 100) ,DR( 100) ,DID( 100) ,DTHD( 100)
DIMENSION DOMD( 100) ,RX( 100) ,RY( 100) ,RZ( 100) ,RFX( 100) ,RFY( 100)
DIMENSION RFZ(100) ,DRV(100) ,ARC(100) ,ARCD(100) ,DAY(100) ,HX(100)
DIMENSION HY(100),-HZ(100),VX(100),VY(100),VZ(100),DT(100),NX(100)
DIMENSION NY(100) ,NZ( 100) ,RDV(100) ,EX(100) ,EY(100) ,EZ(100)
DIMENSION NDE(100) ,EDR(100) ,V(100) ,HT(i0),RDRF(100) ,INTA(100)
DIMENSION ROMA( 100) ,THJO( 100) ,ATE( 100) ,CTE( 100)
COMMON/OBLATE1/DAY,RX,RY,RZ,VX,VY,VZ,DT,HX,HY,HZ,NX,NY,NZ,K,KK
COMMON/OBLATE2/RDV,R,V,EX,EY,EZ,MIU,NDE,EDR-,H,N,E,P, I,OMI,W,F
COMMON/OBLATE3/PI,EC,M1,A,HT,ER,TH,THD,RTD,MD,WD,OMD,ID,ECD
COMMION/OBLATE4/FD,LINE,J,THF,THFD, IF, IFD,OMF,OMFD,RF, INT,ROM
COMMON/OBLATE5/RJ,DR,DID ,DTHD,DOMD,ESTERR,ACTERR,TERROR,JVER
COMMON/OBLATE6/RFX, RFY ,RFZ ,ARC, AROD ,RDRF ,DRV ,RJ2 ,JN, JORB IT
COMMON/OBLATE7/INTA,ROMA,THJO ,ATE , TE

C
-EXTERNAL RADIUS

C
C CALCULATE E, SINE, AND COSINE FUNCTIONS
C

S=DSIN(I(1))
S2=S*S
S4=S 2*S2
S6=S4*S2
C=DCOS(I(1))
C2=C*C
SC=DSIN(1(l) )*DCOS(I( 1))
E2=E( 1)*E( 1)

C FORMULA ( SOLUTION)
C

IF(JVER. EQ. 1)THEN
C

Yl112. ODO-75. ODO*S6+260. 0D0*S4-296. ODO*S2
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-Y2=RJ*T~i(J)*(2. rDO*S2-2. ODO)
Y3=2.ODO*W(1) -Y2-
Y4=24. ODO*(5. qDO*S2- 4. ODO)*(5. ODO*S2-4. ODO)
Y.5 =E2*S2*( 14. ODO- 15. ODO*'S2)*( 15. ODO*S2-13. ODO)
Y6=9.0OD*E2+34.0OD
Y77i5. ODO*S4-45. ODO*S2+28. ODO
Y8=6.ODO*(5. ODO*S2-4. ODO)*(5. ODO*S2-4. ODO)
Y9=12. ODO*(5. ODO*S2-4. ODO)

'C
Y1O=(6. ODO-S2)/12. ODO-E(1)*S2*DCOS(3. ODO*TH(1)-W(1))/3. ODO-

+ -S2*DCOS(2. ODO*TH(l))+E2*(7. ODO*S2-4. ODO)/24. ODO

1!12=9. ODO*E2-34. ODO
C

YF=(2. 5D0*S2-2. ODO)*(THF(J)-TH(l))+E2*Y1*DSIN(Y2)*DCOS(Y3)/Y4

YS=Y5*DCO S( 2:ODO*W( 1) )/( 2..ODO*Y9)+
+ E(1)*S2*(15. ODO*S2-13. ODO)*DCOS(TH(1)+W(l))/2. ODO+
+ E(1)*S2*(15. ODO*S2.13. ODO)*DCOS(3. ODO*TH(1)-W(1))/6. ODOI
+ S2*(15. ODO*S2-13. ODO)*DCOS(2. ODO*TH(1l))/2. ODO+
4- '(5. ODO*Y6*S4+4. ODO*YL12*S2-56. ODO*E2)/96. ODO

,Y=TfHF( J) -W( 1) +RJ*rYF+RJ*RJ*THF( J) *YS
C
C CALCULATE INCLINATION ( SOLUTION)

IF(J)=I( 1)+SC*~RJr,(DCOS(2. ODO*THF(J))/2. ODO+
+ E(1)*DCOS(Y+2. ODO*THF(J))/6.DO+E(1)*DCOS(Y-2.DO*THF(J))/2.DO+
+ E2*( 14. DO-15.-DO*S2)*DSIN(Y2)*DSIN(Y3)/(12. DQ*(5. DO*S2-4. DO))-
+ DCOS(2. ODO*TH(1))/2. ODO-E(1)*DCOS(3. ODO*TH(1)-W(1))/6. ODO-
+ E(1)*DCOS(TH(i)+W(1))/2. ODO)

C
C CALCULATE LONGITUDE OF THE ASCENDING NODE ( SOLUTION)
C

RJ2=RJ*RJ
C

OMF(J)=O1( 1)+C*RJ*(TH(1)-TIIF(J)+DSIN(2. ODO*THF(J))/2. ODO-
+ E(1l)*DSIN(Y)+E(1)*DSIN(Y+2. ODO*THF(J))/6. ODO-
+ E(1)*DSIN(Y-2. ODO*THF(J))/2. ODO-DSIN(2. ODO*TH(l))/2. ODO+
+ E(1y*DSIN(TII(1)-Wi(l))-E(1)*DSIN(3. ODO*TH(l)-W(1))/6. ODO-
+ E(1)*DSIN(TH(1)+W (1))/2. ODO+E2*Y7*DSIN(Y2)*DCOS(Y3)/Y8)+
+ C*RJ2*THF(J)*(E2*S2*( 15. ODO*S2-14. ODQ)*DCOS( 2. DO*W( 1)) /Y9-
+ E(1y*S2*DCOS(TH(1)+Ii(1))+YlO)

C
ENDIF

C
C FORMULA ( SIMPLIFIED SOLUTION)
C

IF(JVER. EQ. 2)THEN
C
C CALCULATE INCLINATION ( SIMPLIFIED SOLUTION)
C

IF(J)I( 1)+SC*RJ*c(DCOS(2. ODO*THF(J))/2. ODO+
+ E(1)*DCOS(3. ODO*THF(J)-Wi(1))/6. ODO+
+ E(1)*DCOS(THIF(J)+W(1))/2. ODO-DCOS(2. ODO*TH(1))/2. ODO-
+ E(1)*DCOS(3. ODQ*Ti(1)-W?(1))/6. ODO-
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+ E(:1,)*DCOS(TH(1)+W(l))/2. ODO)
C
C CALCULATE LONGITUDE OF TlHE ASCENDING NODE-( SIMPLIFIED SOLUTION)

O1M(J)=OM(1)+ C*R J*(THCI)'-THF(J)+DSIN(2. ODO*T}{F(J))/2. ODO-
+ E(1)*DSIN -THF(J)-W(1l))+E(1)*DSIN(3. OD0*THF(J)-W(l))/6. 0D0+

E(1)*DSIN(THF(J)+W(l))f". ODO-DSIN(2. ODO*TH(l))/2. 0D0+
+ E(1)*DSIN(TH(1)-W(l))-E(1y*DSIN(3. ODO*TH(1)-W(1l))/6. ODO-

+ E(1)*DSIN(TH(1)+W(l))/2. ODO)
C

END IF
C
C FORMULA ( TWMO BODY SOLUTION)
c

IF(JVER. EQ. 3,)THEN
C

CALCULATE INCLINATION TW l~O BODY SOLUTION)
C

IF(J)1( 1)
C
C CALCULATE LONGITUDE OF THE ASCENDING NODE CTWO BODY SOLUTION)
C

OMF(J)0OM( 1)
C

ENDIF
-C
C CALCULATE RADIUS ( SOLUTION, SIMPLIFIED, OR TWO0 BODY)
C

RF(j)=RADIUS(RJ,A(1) ,I(1) ,E(1) ,W(1) ,TH(1) ,THF(J) ,JVER)
C
C CONVERT ANGLES TO DEGREES
C

OLIFD( J)=OMF(J)*RTD
IFD( J)1F( J)*RTD
THFD( J)=THF( J)*RTD
JORBIT( J)=O

10 IF(THFDCJ). GT. 360. 0D0)THEN
THFD(J)=-THFD(j)36O. ODO
JORBIT( J)=JORBI'T.(J)+1
GOTO 10

END IF
THJO(J)=JORBIT(J)*2. OD0'*PI+TH(J) -TiI( 1)

20 IF(OMFD(J). GT. 360. 0D0)T[EN
OMFD(J)=OMFD(J) -360. ODO
GOTO 20

END IF
THF(J)=THFDCJ) /RTD
OMF( J)=OMFD(J) /RTD

C
C CALCULATE DELTAS
C

DRCJ)=RFCJ) -R(J)
DID(J)=IFD(J) -ID(J)
DTHD(J)=TIIFD(J) -TIID(J)
IF(DABS(DTHD(j)). GE. 180. ODO)THEN

IF(DTHD(J). LT, 0. ODO)THEN
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DTHD(J)=DTHD(J)+360. ODO-
ELSE

DTHD(J)=DTHD(J) -360. ODO
ENDIF

ENDIF
DOMD(J)OMFD(J) -OMD(J-)

C,
RETURN
END

C
C
o C
o SUBROUTINE INERTIAL *
o C
C
C

SUBROUTINE INERTIAL
IMPLICIT DOUBLE PRECISION (A-I ,M-Z)
CHARACTER*20 LINE
DIMENSION M(100),M D(100),E(100),W(100),WD(1OO),OM(100),OMD(100)
DIMENSION I(100),ID(100),FX100),FD(100),EC(100),ECD(100),A(100)
DIMENSION R(100),H(100),-.;N(100) ,TH(100) ,THD(100)
DIMENSION RF(100) ,IF(100) ,IFD(100) ,OMF(100) ,OMFD(100) ,THIF(100)
DIMENSION THFD( 100) ,PGLOO) ,JORBIT( 100) ,DR( 100) ,DID( 100) ,DTHD( 100)
DIMENSION DOMD(100) ,RX(100) ,RY(100) ,RZ(100) ,RFX(100) ,RFY(100)
DIMENSION RFZ(100) ,DRV(100) ,ARC(100),ARCD(100) ,DAY(100) ,HX(100)
DIMENSION HY(100),HZ(100),VX(100),VY(100),VZ(100),DT(100),,NX(100)
DIMENSION NY(100),NZ(100),RDV(100),EX(100),EY(100),EZ(100)
DIMENSION NDE(100) ,EDR(100),V(100) ,HT(100) ,RDRF(100) ,INTA(100)
DIMENSION EARC( 100) ,EARCD( 100) ,PDR( 100)
DIMEN -SION ROMiA(QO) ,THJO(100) ,ATE(-100) ,CTE(100)
COMMION/OBLATE1/DAY,RX,RY,RZ,VX,VIY,VZ,DT,HX,HY,HZ,N.,NY,NZ,K,KK
COMON/OBLATE2/RDV,R,V,EX,EY,EZ,MU,NDE,EDR,H,N,E,P,I,OM,W,F
COMMION/OBLATE3/PI,EC,M,A,HT,ER,TH,THD,RTD,MD,WD,OMD, ID,ECD
COMMON/OBLATE4/FD,LINE,J,THF,THFD, IF,'IFD,OMF,OMIFD,RF, INT,ROM
COMMON/OBLATE5/RJ,DR,DID ,DTHD,DOMD,ESTERR ,ACTERR,TERROR,JVER
COMMON/OBLATE6/RFX ,RFY ,RFZ ,ARC, ARCD ,RDRF ,DR,RJ2 ,J,JORBIT
COMMfON/OBLATE7/INTA,ROMA,THJO ,ATE ,CTE
COMMON/SPECIAL/EARC ,EARCD,PDR,ENG,ENGF

C
C CALCULATE INITIAL ENERGY
C

ENG=V( 1)*V( 1)/2. ODO-MU/R( 1)
ENGF=V( 1)*V(1)/2. ODO-IIU/RF( 1)

C
C CALCULATE INERTIAL COORDINATES
C

RFX(J)=RF(J)*(DCOS(THF(J) )*DCOS(OMF(J)-) -
+ DSIN(THF(J))*DCOS(IF(J))*DSIN(OMF(J)))
RFY(J)=RF(J)*(DCOS(THF(J) )*DSIN(ON1FCJ) )+

+ DSIN(THF(J) )*DCOS( IF(J) )*DCOS(OMF(J)))
RFZ(J)=RF(J)*(DSIN(THF(J) )*DSIN( IF(J)))

C
C CALCULATE DR VECTOR
C

DRV(J)=DSQRT( (RFX(J) -RX(J) )*(RFX(J) -RX(J) )+
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+ (RFY(J)--RY(J))*(RFY(J)-RY(J))+
+ (RPZ(J)-RZ(J))*(RFZ(J)-RZ(J)))

,PDR(J)=DRV(J)/R(J)
C
C CALCULATE ANGLE ERROR
C

CALL DOT(RX(J),RY(J),RZ(J),RFX(J),RFY(J),RFZ(J),RDRF(J))
ARC(J)F=DACOS(RDRF(J)/(R(J)*RF(J)))
CC=RF( J)
CCP=R( J)
BB=ER
AA=DSQRT(BB*BB+CC*CC-2. ODO*BB*CC*DCOS(ARC(J)/2. ODO))
AAP=DSQRT(BB*BB+CCP*CCP-2. ODO*BB*CCP*VDCOS(ARC(J)/2. Oj)0)),
CCA=PI-DASIN(CC*DSIN(ARC(J) /2. ODO)/AA)
CCPA=PI-DASIN(CCP*DSIN(ARC(J)/2. ODO) fAAP)
EARC(J)=2. ODO*PI-CCA-CCPA
ARCD(J)=ARC(J)*RTD
EARCD(J)=EARC( J)*RTD

C
C CALCULATE DOWNRANGE AND CROSSRANGE ERRORS
C

ATE(J)=R(J)'*(DTHD(-J)/RTD+DCOS( 1(J) )*DOMD(J)/RTD)
CTE(J)=R(J)*(DSIN(TH(J) )*DID(J)/RTD-

+ DCOS(TH(J)Y)*DSIN(I(J))*DOMD(J)/RTD)
C

RETURN
END

C
C
C*
C * SUBROUTINE RESULTS
C
C JJJJJ..L.J....J4JJJJ.*......J

C
SUBROUTINE RESULTS
IMPLICIT DOUBLE PRECISION (A-I,M-Z)
CHARACTER*20 LINE
CHARACTER-* 11 VERS ION
DIMENSION M(100),MD(100),E(100),W(100),WD(100),OM(100),OMD(loO)
DIMENSION I(100),ID(100),F(100),FD(100),EC(1oo),ECD(1oo),A(100)
DIMENSION R(100) ,H(100) ,N(100) ,TH(100) ,THD(100)
DIMENSION RF(100) ,IF(100),IFD(100) ,OMF(100) ,OMFD(100) ,THF(100)
DIMENSION THFD(100) ,P(100) ,JORBIT(100) ,DR(100) ,DID(100) ,DTHD(100)
DIMENSION DOMD(100) ,RX(100) ,RY(100),RZ(100) ,RFX(100) ,RFY(100)
DIMENSION RFZ( 100) ,DRV( 100) ,ARC( 100) ,ARCD( 100) ,DAY( 100) ,HX( 100)
DIMENSION HYC100),HZ(100),VX(100),VY(100),VZ(100),DT(100),NX(100)
DIMENSION NY(100),NZ(1CO),RDV(100),EX(100),EY(.Oo),EZ(100)
DIMENSION NDE(100),EDR(100) ,V(100),HT(100) ,RDRF(100),INTA(100)
DIMENSION EAROC 100) ,EARCD( 100) ,PDR( 100)-
DIMENSION ROMA(100),THJO(100),ATE(100) ,CTE(100)
COMMON/OBLATEI/DAY,RX,RY,RZ,VX,VY,VZ,DT,HX,HY,HZ,NX,NY,NZ,K,KK
COMMON/OBLATE2/RDV,R,V,EX,EY,EZ,MU,NDE,EDR,H,N,E,P,I ,OM,W,F
COMMION/OBLATE3/PI,EC,M,A,IIT,ER,TH,TIID,RTD,MID,WD,OMD,ID,ECD
COMMON/OBLATE4/FD,LINE,J,THIF,THFD, IF, IFD,OMF,OMFD,RF, INT,ROM,,
COMMON/OBLATE5/RJ,DR,DID,DTHD, DOMD,ESTERR,ACTERR,TERROR,JVER
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COMMON/OBLATE6/RFX,RFY,RFZ,ARC,ARCD,RDRF,DRV,RJ2-,JN,jORBITT
COMMON/OBLATE7/INTA,ROMA,THJO,ATE,CTE
COMMON/SPECIAL/EARO ,EARCD, PDR,ENG,ENGF

C
DR( 1)O. ODO
DID(1)=0.ODO
DTHD( 1)=0. ODO
DOMD( 1)=0. ODO
DRV( 1)0. ODO
ARCD( 1)=O. ODO
EARCD( 1)=0. ODO
PDR( 1)=0. ODO
THJO( 1)0. ODO
ATE(1)=0. ODO
CTE(1)=0.ODO

C
IF(JVER.EQ. 1)THEN

VERSION' SOLUTION
ELSE IF(JVER. EQ. 2)THEN

VERSION='SIMPLIFIED'
ELSEIF(JVER. EQ. 3)THEN

VERSION=' SECULAR
ENDIF
IF(RJ. EQ.0. ODO)THEN

VERSION='TWO BODY
ENDIF

C
C OUTPUT RESULTS FOR DISSPLA

VC

IF(JVER. EQ. 1)THEN
WRITE(3,3000) K

If WRITE(3,3100) RJ
ENDIF

C
DO 10 J = 1, KK
WRITE(3,3100) DR(J) ,DID(J) ,DTHD(J)
WRITE(3,3100) DOiM-D(J),DRV(J) ,EARCD(J)
WRITE(3,3100) PDR(J),ATE(J),CTE(J)
WRITE(4,3100) THJO(J)

10 CONTINUE
C
C PRINT RESULTS
C

WRITE(6,(/)')
WRITE(2,'(/)')
WRITE(6,6000) 'RESULTS'
WRITE(2,6000) 'RESULTS'
WRITE(6,6100) LINE
WRITE(2,6100) LINE
WRITE(6,6200) 'J = IRJ
WRITE(2,6200) 'J = ',RJ
WRITE(6,6300) 'VERSION = 'VERSION
WRITE(2,6300) 'VERSION = 'VERSION
WRITE(6,6100) LINE
WRITE(2,6100) LINE

C
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DO 20 J = K, KK
C

WRITE(6,6400) 'POINT = ',J,'ORBIT = ',JORBIT(J),
+ 'ROMBERG ITERATIONS = ,JN

WRIITE(2,6400) 'POINT = I Pj,'ORBIT = ,JORBIT(J),
+ 'ROMBERG ITERATIONS = 'JN

C
WRITE(6,6500) 'R = ',R(J),'RF = 'RF(J),:DR = ',DR(J)
WRITE(2,6500) 'R = 'R(J): RF = ',RF(J),'DR = 'pDR(J)

C
WRITE(6,6500) 'I = 'ID(J),:IF = ',IFD(J).,'DI = ',DID(J)
WRITE(2,6500) 'I ='ID(J),'IF = ,IFD(J),'DI = ',DID(J)

CR T ( , 5 0 T , H ( ) : H F = : T F ( ) : T T D J
WRITE(6,6500) 'ITH = ',THD(J),'THF = 'THFD(J), DITH = ',DTHDCJ)

C
WRITE(6,6500) '0OM = ',OMD(J),'OMF = 'OMFD(J),'D014f= ',DOMD(J'pr
WRITE(2,6500) '014 = ',OMD(J),'OMF =,OMFD(J),'DOM = ',DOMD(J,%

C
W'RITE(6,6500) 'RX = ',RX(J),'RY = 'RYCJ),'RZ = ',RZ(J)
WRITE(2,6500) 'RX = 'RX(J),'RY = ,RY(J),'RZ = ',RZ(J)

C
WRITE(6,6500) 'RFX = ',RFX(J),'RFY =',RFY(J),'-RFZ = ',RFZ(J)
W'RITE(2,6500) 'RFX = ',RFX(J),'RFY =',RFY(J), RFZ = ',RFZ(J)

C
W'RITE(6,6500) 'DRy = ',DRV(J),'PDR =',PDR(J),

+ 'EARC= ',EARCD(J)
WRITE(2,6500) 'DRV = ',DRV(J),'PDR =',PDR(J),

+ 'EARC= ',EARCD(J)
C

WRITE(6,6500) 'RITE = 'DR(J),'ATE = ',ATE(J),
+ 'CITE = ',CTE(J)

WRITE(2,6500) 'RITE = 'DR(J),'ATE = ',ATE(J),
+ 'CITE = ',CTE(J)

C
WRITE(6,6600) 'INT = 'INTA(J),'ROM = ',ROMA(J)
WRITE(2,6600) 'INT = 'INTA(J),'ROM = ',ROMA(J)

C
20 CONTINUE
C

WRITE(6,6500) 'EG = ',ENG,'EGF = 'ENGF
WRITE(2,6500) 'EG = ',ENG,'EGF = ,ENGF

C
UWRITE(6,'(/)')
WRITEC2, '(I)')

C
3000 FOR14AT(3X,13)
3100 FOR.%AT(3(3X,D18. 10))
C
6000 FORKA4T(3X,A)
6100 FORM.AT(3X,A20//)
6200 FOR14AT(3X,A,F8. 6)
6300 FORNAT(3X,A,Al1//)
6400 FORMAC2(3X,AB,13/) ,3X,A21,I3//)
6500 FORMAT(3(3X,A6,F23. 15/))
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6600 FORMAT(3(3X,A6,F23. 8/))
C

RETURN
END

C
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